close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/polynomial.lisp@ 2911

Last change on this file since 2911 was 2911, checked in by Marek Rychlik, 9 years ago

* empty log message *

File size: 18.0 KB
Line 
1;;; -*- Mode: Lisp -*-
2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
22(defpackage "POLYNOMIAL"
23 (:use :cl :ring :monom :order :term #| :infix |# )
24 (:export "POLY"
25 "POLY-TERMLIST"
26 "POLY-TERM-ORDER")
27 (:documentation "Implements polynomials"))
28
29(in-package :polynomial)
30
31(proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0)))
32
33(defclass poly ()
34 ((termlist :initarg :termlist :accessor poly-termlist
35 :documentation "List of terms.")
36 (order :initarg :order :accessor poly-term-order
37 :documentation "Monomial/term order."))
38 (:default-initargs :termlist nil :order #'lex>)
39 (:documentation "A polynomial with a list of terms TERMLIST, ordered
40according to term order ORDER, which defaults to LEX>."))
41
42(defmethod print-object ((self poly) stream)
43 (format stream "#<POLY TERMLIST=~A ORDER=~A>"
44 (poly-termlist self)
45 (poly-term-order self)))
46
47(defmethod r-equalp ((self poly) (other poly))
48 "POLY instances are R-EQUALP if they have the same
49order and if all terms are R-EQUALP."
50 (and (every #'r-equalp (poly-termlist self) (poly-termlist other))
51 (eq (poly-term-order self) (poly-term-order other))))
52
53(defmethod insert-item ((self poly) (item term))
54 (push item (poly-termlist self))
55 self)
56
57(defmethod append-item ((self poly) (item term))
58 (setf (cdr (last (poly-termlist self))) (list item))
59 self)
60
61;; Leading term
62(defgeneric leading-term (object)
63 (:method ((self poly))
64 (car (poly-termlist self)))
65 (:documentation "The leading term of a polynomial, or NIL for zero polynomial."))
66
67;; Second term
68(defgeneric second-leading-term (object)
69 (:method ((self poly))
70 (cadar (poly-termlist self)))
71 (:documentation "The second leading term of a polynomial, or NIL for a polynomial with at most one term."))
72
73;; Leading coefficient
74(defgeneric leading-coefficient (object)
75 (:method ((self poly))
76 (r-coeff (leading-term self)))
77 (:documentation "The leading coefficient of a polynomial. It signals error for a zero polynomial."))
78
79;; Second coefficient
80(defgeneric second-leading-coefficient (object)
81 (:method ((self poly))
82 (r-coeff (second-leading-term self)))
83 (:documentation "The second leading coefficient of a polynomial. It
84 signals error for a polynomial with at most one term."))
85
86;; Testing for a zero polynomial
87(defmethod r-zerop ((self poly))
88 (null (poly-termlist self)))
89
90;; The number of terms
91(defmethod r-length ((self poly))
92 (length (poly-termlist self)))
93
94(defmethod multiply-by ((self poly) (other monom))
95 (mapc #'(lambda (term) (multiply-by term other))
96 (poly-termlist self))
97 self)
98
99(defmethod multiply-by ((self poly) (other scalar))
100 (mapc #'(lambda (term) (multiply-by term other))
101 (poly-termlist self))
102 self)
103
104
105(defmacro fast-add/subtract (p q order-fn add/subtract-fn uminus-fn)
106 "Return an expression which will efficiently adds/subtracts two
107polynomials, P and Q. The addition/subtraction of coefficients is
108performed by calling ADD/SUBTRACT-METHOD-NAME. If UMINUS-METHOD-NAME
109is supplied, it is used to negate the coefficients of Q which do not
110have a corresponding coefficient in P. The code implements an
111efficient algorithm to add two polynomials represented as sorted lists
112of terms. The code destroys both arguments, reusing the terms to build
113the result."
114 `(macrolet ((lc (x) `(r-coeff (car ,x))))
115 (do ((p ,p)
116 (q ,q)
117 r)
118 ((or (endp p) (endp q))
119 ;; NOTE: R contains the result in reverse order. Can it
120 ;; be more efficient to produce the terms in correct order?
121 (unless (endp q)
122 ;; Upon subtraction, we must change the sign of
123 ;; all coefficients in q
124 ,@(when uminus-fn
125 `((mapc #'(lambda (x) (setf x (funcall ,uminus-fn x))) q)))
126 (setf r (nreconc r q)))
127 r)
128 (multiple-value-bind
129 (greater-p equal-p)
130 (funcall ,order-fn (car p) (car q))
131 (cond
132 (greater-p
133 (rotatef (cdr p) r p)
134 )
135 (equal-p
136 (let ((s (funcall ,add/subtract-fn (lc p) (lc q))))
137 (cond
138 ((r-zerop s)
139 (setf p (cdr p))
140 )
141 (t
142 (setf (lc p) s)
143 (rotatef (cdr p) r p))))
144 (setf q (cdr q))
145 )
146 (t
147 ;;Negate the term of Q if UMINUS provided, signallig
148 ;;that we are doing subtraction
149 ,(when uminus-fn
150 `(setf (lc q) (funcall ,uminus-fn (lc q))))
151 (rotatef (cdr q) r q)))))))
152
153
154(defmacro def-add/subtract-method (add/subtract-method-name
155 uminus-method-name
156 &optional
157 (doc-string nil doc-string-supplied-p))
158 "This macro avoids code duplication for two similar operations: ADD-TO and SUBTRACT-FROM."
159 `(defmethod ,add/subtract-method-name ((self poly) (other poly))
160 ,@(when doc-string-supplied-p `(,doc-string))
161 ;; Ensure orders are compatible
162 (unless (eq (poly-term-order self) (poly-term-order other))
163 (setf (poly-termlist other) (sort (poly-termlist other) (poly-term-order self))
164 (poly-term-order other) (poly-term-order self)))
165 (setf (poly-termlist self) (fast-add/subtract
166 (poly-termlist self) (poly-termlist other)
167 (poly-term-order self)
168 #',add/subtract-method-name
169 ,(when uminus-method-name `(function ,uminus-method-name))))
170 self))
171
172(eval-when (:compile-toplevel :load-toplevel :execute)
173
174 (def-add/subtract-method add-to nil
175 "Adds to polynomial SELF another polynomial OTHER.
176This operation destructively modifies both polynomials.
177The result is stored in SELF. This implementation does
178no consing, entirely reusing the sells of SELF and OTHER.")
179
180 (def-add/subtract-method subtract-from unary-minus
181 "Subtracts from polynomial SELF another polynomial OTHER.
182This operation destructively modifies both polynomials.
183The result is stored in SELF. This implementation does
184no consing, entirely reusing the sells of SELF and OTHER.")
185
186)
187
188#|
189(defmethod unary-minus ((self poly))
190 "Destructively modifies the coefficients of the polynomial SELF,
191by changing their sign."
192 (mapc #'unary-minus (poly-termlist self))
193 self)
194
195
196(defun add-termlists (p q order-fn)
197 "Destructively adds two termlists P and Q ordered according to ORDER-FN."
198 (fast-add/subtract p q order-fn add-to nil))
199
200(defmacro multiply-term-by-termlist-dropping-zeros (term termlist
201 &optional (reverse-order nil))
202 "Multiplies term TERM by a list of term, TERMLIST.
203Takes into accound divisors of zero in the ring, by
204deleting zero terms."
205 `(mapcan #'(lambda (other-term)
206 (let ((prod (r*
207 ,(cond
208 (reverse-order
209 `(other-term ,term)
210 `(,term other-term))))))
211 (cond
212 ((r-zerop prod) nil)
213 (t (list prod)))))
214 ,termlist))
215
216(defun multiply-termlists (p q order-fn)
217 (cond
218 ((or (endp p) (endp q)) nil) ;p or q is 0 (represented by NIL)
219 ;; If p= p0+p1 and q=q0+q1 then p*q=p0*q0+p0*q1+p1*q
220 ((endp (cdr p))
221 (multiply-term-by-termlist-dropping-zeros (car p) q)
222 ((endp (cdr q))
223 (multiply-term-by-termlist-dropping-zeros (car q) p t)
224 (t
225 (nconc (multiply-terms (car p) (car q))
226 (tail (add-termlists
227 (multiply-term-by-termlist-dropping-zeros (car p) (cdr q))
228 (multiply-termlists (cdr p) q)
229 order-fn))))))))
230
231
232(defmethod multiply-by ((self poly) (other poly))
233 (setf (poly-termlist self) (multiply-termlists (poly-termlist self)
234 (poly-termlist other)
235 (poly-term-order self)))
236 self)
237
238#|
239
240(defun poly-standard-extension (plist &aux (k (length plist)))
241 "Calculate [U1*P1,U2*P2,...,UK*PK], where PLIST=[P1,P2,...,PK]
242is a list of polynomials."
243 (declare (list plist) (fixnum k))
244 (labels ((incf-power (g i)
245 (dolist (x (poly-termlist g))
246 (incf (monom-elt (term-monom x) i)))
247 (incf (poly-sugar g))))
248 (setf plist (poly-list-add-variables plist k))
249 (dotimes (i k plist)
250 (incf-power (nth i plist) i))))
251
252
253
254(defun saturation-extension (ring f plist
255 &aux
256 (k (length plist))
257 (d (monom-dimension (poly-lm (car plist))))
258 f-x plist-x)
259 "Calculate [F, U1*P1-1,U2*P2-1,...,UK*PK-1], where PLIST=[P1,P2,...,PK]."
260 (declare (type ring ring))
261 (setf f-x (poly-list-add-variables f k)
262 plist-x (mapcar #'(lambda (x)
263 (setf (poly-termlist x)
264 (nconc (poly-termlist x)
265 (list (make-term :monom (make-monom :dimension d)
266 :coeff (funcall (ring-uminus ring)
267 (funcall (ring-unit ring)))))))
268 x)
269 (poly-standard-extension plist)))
270 (append f-x plist-x))
271
272
273(defun polysaturation-extension (ring f plist
274 &aux
275 (k (length plist))
276 (d (+ k (monom-dimension (poly-lm (car plist)))))
277 ;; Add k variables to f
278 (f (poly-list-add-variables f k))
279 ;; Set PLIST to [U1*P1,U2*P2,...,UK*PK]
280 (plist (apply #'poly-append (poly-standard-extension plist))))
281 "Calculate [F, U1*P1+U2*P2+...+UK*PK-1], where PLIST=[P1,P2,...,PK]. It destructively modifies F."
282 ;; Add -1 as the last term
283 (declare (type ring ring))
284 (setf (cdr (last (poly-termlist plist)))
285 (list (make-term :monom (make-monom :dimension d)
286 :coeff (funcall (ring-uminus ring) (funcall (ring-unit ring))))))
287 (append f (list plist)))
288
289(defun saturation-extension-1 (ring f p)
290 "Calculate [F, U*P-1]. It destructively modifies F."
291 (declare (type ring ring))
292 (polysaturation-extension ring f (list p)))
293
294;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
295;;
296;; Evaluation of polynomial (prefix) expressions
297;;
298;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
299
300(defun coerce-coeff (ring expr vars)
301 "Coerce an element of the coefficient ring to a constant polynomial."
302 ;; Modular arithmetic handler by rat
303 (declare (type ring ring))
304 (make-poly-from-termlist (list (make-term :monom (make-monom :dimension (length vars))
305 :coeff (funcall (ring-parse ring) expr)))
306 0))
307
308(defun poly-eval (expr vars
309 &optional
310 (ring +ring-of-integers+)
311 (order #'lex>)
312 (list-marker :[)
313 &aux
314 (ring-and-order (make-ring-and-order :ring ring :order order)))
315 "Evaluate Lisp form EXPR to a polynomial or a list of polynomials in
316variables VARS. Return the resulting polynomial or list of
317polynomials. Standard arithmetical operators in form EXPR are
318replaced with their analogues in the ring of polynomials, and the
319resulting expression is evaluated, resulting in a polynomial or a list
320of polynomials in internal form. A similar operation in another computer
321algebra system could be called 'expand' or so."
322 (declare (type ring ring))
323 (labels ((p-eval (arg) (poly-eval arg vars ring order))
324 (p-eval-scalar (arg) (poly-eval-scalar arg))
325 (p-eval-list (args) (mapcar #'p-eval args))
326 (p-add (x y) (poly-add ring-and-order x y)))
327 (cond
328 ((null expr) (error "Empty expression"))
329 ((eql expr 0) (make-poly-zero))
330 ((member expr vars :test #'equalp)
331 (let ((pos (position expr vars :test #'equalp)))
332 (make-poly-variable ring (length vars) pos)))
333 ((atom expr)
334 (coerce-coeff ring expr vars))
335 ((eq (car expr) list-marker)
336 (cons list-marker (p-eval-list (cdr expr))))
337 (t
338 (case (car expr)
339 (+ (reduce #'p-add (p-eval-list (cdr expr))))
340 (- (case (length expr)
341 (1 (make-poly-zero))
342 (2 (poly-uminus ring (p-eval (cadr expr))))
343 (3 (poly-sub ring-and-order (p-eval (cadr expr)) (p-eval (caddr expr))))
344 (otherwise (poly-sub ring-and-order (p-eval (cadr expr))
345 (reduce #'p-add (p-eval-list (cddr expr)))))))
346 (*
347 (if (endp (cddr expr)) ;unary
348 (p-eval (cdr expr))
349 (reduce #'(lambda (p q) (poly-mul ring-and-order p q)) (p-eval-list (cdr expr)))))
350 (/
351 ;; A polynomial can be divided by a scalar
352 (cond
353 ((endp (cddr expr))
354 ;; A special case (/ ?), the inverse
355 (coerce-coeff ring (apply (ring-div ring) (cdr expr)) vars))
356 (t
357 (let ((num (p-eval (cadr expr)))
358 (denom-inverse (apply (ring-div ring)
359 (cons (funcall (ring-unit ring))
360 (mapcar #'p-eval-scalar (cddr expr))))))
361 (scalar-times-poly ring denom-inverse num)))))
362 (expt
363 (cond
364 ((member (cadr expr) vars :test #'equalp)
365 ;;Special handling of (expt var pow)
366 (let ((pos (position (cadr expr) vars :test #'equalp)))
367 (make-poly-variable ring (length vars) pos (caddr expr))))
368 ((not (and (integerp (caddr expr)) (plusp (caddr expr))))
369 ;; Negative power means division in coefficient ring
370 ;; Non-integer power means non-polynomial coefficient
371 (coerce-coeff ring expr vars))
372 (t (poly-expt ring-and-order (p-eval (cadr expr)) (caddr expr)))))
373 (otherwise
374 (coerce-coeff ring expr vars)))))))
375
376(defun poly-eval-scalar (expr
377 &optional
378 (ring +ring-of-integers+)
379 &aux
380 (order #'lex>))
381 "Evaluate a scalar expression EXPR in ring RING."
382 (declare (type ring ring))
383 (poly-lc (poly-eval expr nil ring order)))
384
385(defun spoly (ring-and-order f g
386 &aux
387 (ring (ro-ring ring-and-order)))
388 "It yields the S-polynomial of polynomials F and G."
389 (declare (type ring-and-order ring-and-order) (type poly f g))
390 (let* ((lcm (monom-lcm (poly-lm f) (poly-lm g)))
391 (mf (monom-div lcm (poly-lm f)))
392 (mg (monom-div lcm (poly-lm g))))
393 (declare (type monom mf mg))
394 (multiple-value-bind (c cf cg)
395 (funcall (ring-ezgcd ring) (poly-lc f) (poly-lc g))
396 (declare (ignore c))
397 (poly-sub
398 ring-and-order
399 (scalar-times-poly ring cg (monom-times-poly mf f))
400 (scalar-times-poly ring cf (monom-times-poly mg g))))))
401
402
403(defun poly-primitive-part (ring p)
404 "Divide polynomial P with integer coefficients by gcd of its
405coefficients and return the result."
406 (declare (type ring ring) (type poly p))
407 (if (poly-zerop p)
408 (values p 1)
409 (let ((c (poly-content ring p)))
410 (values (make-poly-from-termlist
411 (mapcar
412 #'(lambda (x)
413 (make-term :monom (term-monom x)
414 :coeff (funcall (ring-div ring) (term-coeff x) c)))
415 (poly-termlist p))
416 (poly-sugar p))
417 c))))
418
419(defun poly-content (ring p)
420 "Greatest common divisor of the coefficients of the polynomial P. Use the RING structure
421to compute the greatest common divisor."
422 (declare (type ring ring) (type poly p))
423 (reduce (ring-gcd ring) (mapcar #'term-coeff (rest (poly-termlist p))) :initial-value (poly-lc p)))
424
425(defun read-infix-form (&key (stream t))
426 "Parser of infix expressions with integer/rational coefficients
427The parser will recognize two kinds of polynomial expressions:
428
429- polynomials in fully expanded forms with coefficients
430 written in front of symbolic expressions; constants can be optionally
431 enclosed in (); for example, the infix form
432 X^2-Y^2+(-4/3)*U^2*W^3-5
433 parses to
434 (+ (- (EXPT X 2) (EXPT Y 2)) (* (- (/ 4 3)) (EXPT U 2) (EXPT W 3)) (- 5))
435
436- lists of polynomials; for example
437 [X-Y, X^2+3*Z]
438 parses to
439 (:[ (- X Y) (+ (EXPT X 2) (* 3 Z)))
440 where the first symbol [ marks a list of polynomials.
441
442-other infix expressions, for example
443 [(X-Y)*(X+Y)/Z,(X+1)^2]
444parses to:
445 (:[ (/ (* (- X Y) (+ X Y)) Z) (EXPT (+ X 1) 2))
446Currently this function is implemented using M. Kantrowitz's INFIX package."
447 (read-from-string
448 (concatenate 'string
449 "#I("
450 (with-output-to-string (s)
451 (loop
452 (multiple-value-bind (line eof)
453 (read-line stream t)
454 (format s "~A" line)
455 (when eof (return)))))
456 ")")))
457
458(defun read-poly (vars &key
459 (stream t)
460 (ring +ring-of-integers+)
461 (order #'lex>))
462 "Reads an expression in prefix form from a stream STREAM.
463The expression read from the strem should represent a polynomial or a
464list of polynomials in variables VARS, over the ring RING. The
465polynomial or list of polynomials is returned, with terms in each
466polynomial ordered according to monomial order ORDER."
467 (poly-eval (read-infix-form :stream stream) vars ring order))
468
469(defun string->poly (str vars
470 &optional
471 (ring +ring-of-integers+)
472 (order #'lex>))
473 "Converts a string STR to a polynomial in variables VARS."
474 (with-input-from-string (s str)
475 (read-poly vars :stream s :ring ring :order order)))
476
477(defun poly->alist (p)
478 "Convert a polynomial P to an association list. Thus, the format of the
479returned value is ((MONOM[0] . COEFF[0]) (MONOM[1] . COEFF[1]) ...), where
480MONOM[I] is a list of exponents in the monomial and COEFF[I] is the
481corresponding coefficient in the ring."
482 (cond
483 ((poly-p p)
484 (mapcar #'term->cons (poly-termlist p)))
485 ((and (consp p) (eq (car p) :[))
486 (cons :[ (mapcar #'poly->alist (cdr p))))))
487
488(defun string->alist (str vars
489 &optional
490 (ring +ring-of-integers+)
491 (order #'lex>))
492 "Convert a string STR representing a polynomial or polynomial list to
493an association list (... (MONOM . COEFF) ...)."
494 (poly->alist (string->poly str vars ring order)))
495
496(defun poly-equal-no-sugar-p (p q)
497 "Compare polynomials for equality, ignoring sugar."
498 (declare (type poly p q))
499 (equalp (poly-termlist p) (poly-termlist q)))
500
501(defun poly-set-equal-no-sugar-p (p q)
502 "Compare polynomial sets P and Q for equality, ignoring sugar."
503 (null (set-exclusive-or p q :test #'poly-equal-no-sugar-p )))
504
505(defun poly-list-equal-no-sugar-p (p q)
506 "Compare polynomial lists P and Q for equality, ignoring sugar."
507 (every #'poly-equal-no-sugar-p p q))
508|#
Note: See TracBrowser for help on using the repository browser.