| 1 | ;;; -*-  Mode: Lisp -*- | 
|---|
| 2 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
| 3 | ;;; | 
|---|
| 4 | ;;;  Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu> | 
|---|
| 5 | ;;; | 
|---|
| 6 | ;;;  This program is free software; you can redistribute it and/or modify | 
|---|
| 7 | ;;;  it under the terms of the GNU General Public License as published by | 
|---|
| 8 | ;;;  the Free Software Foundation; either version 2 of the License, or | 
|---|
| 9 | ;;;  (at your option) any later version. | 
|---|
| 10 | ;;; | 
|---|
| 11 | ;;;  This program is distributed in the hope that it will be useful, | 
|---|
| 12 | ;;;  but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|---|
| 13 | ;;;  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|---|
| 14 | ;;;  GNU General Public License for more details. | 
|---|
| 15 | ;;; | 
|---|
| 16 | ;;;  You should have received a copy of the GNU General Public License | 
|---|
| 17 | ;;;  along with this program; if not, write to the Free Software | 
|---|
| 18 | ;;;  Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | 
|---|
| 19 | ;;; | 
|---|
| 20 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
| 21 |  | 
|---|
| 22 | (defpackage "POLYNOMIAL" | 
|---|
| 23 | (:use :cl :ring :monom :order :term #| :infix |# ) | 
|---|
| 24 | (:export "POLY" | 
|---|
| 25 | "POLY-TERMLIST" | 
|---|
| 26 | "POLY-TERM-ORDER") | 
|---|
| 27 | (:documentation "Implements polynomials")) | 
|---|
| 28 |  | 
|---|
| 29 | (in-package :polynomial) | 
|---|
| 30 |  | 
|---|
| 31 | (proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0))) | 
|---|
| 32 |  | 
|---|
| 33 | (defclass poly () | 
|---|
| 34 | ((termlist :initarg :termlist :accessor poly-termlist | 
|---|
| 35 | :documentation "List of terms.") | 
|---|
| 36 | (order :initarg :order :accessor poly-term-order | 
|---|
| 37 | :documentation "Monomial/term order.")) | 
|---|
| 38 | (:default-initargs :termlist nil :order #'lex>) | 
|---|
| 39 | (:documentation "A polynomial with a list of terms TERMLIST, ordered | 
|---|
| 40 | according to term order ORDER, which defaults to LEX>.")) | 
|---|
| 41 |  | 
|---|
| 42 | (defmethod print-object ((self poly) stream) | 
|---|
| 43 | (format stream "#<POLY TERMLIST=~A ORDER=~A>" | 
|---|
| 44 | (poly-termlist self) | 
|---|
| 45 | (poly-term-order self))) | 
|---|
| 46 |  | 
|---|
| 47 | (defmethod r-equalp ((self poly) (other poly)) | 
|---|
| 48 | "POLY instances are R-EQUALP if they have the same | 
|---|
| 49 | order and if all terms are R-EQUALP." | 
|---|
| 50 | (and (every #'r-equalp (poly-termlist self) (poly-termlist other)) | 
|---|
| 51 | (eq (poly-term-order self) (poly-term-order other)))) | 
|---|
| 52 |  | 
|---|
| 53 | (defmethod insert-item ((self poly) (item term)) | 
|---|
| 54 | (push item (poly-termlist self)) | 
|---|
| 55 | self) | 
|---|
| 56 |  | 
|---|
| 57 | (defmethod append-item ((self poly) (item term)) | 
|---|
| 58 | (setf (cdr (last (poly-termlist self))) (list item)) | 
|---|
| 59 | self) | 
|---|
| 60 |  | 
|---|
| 61 | ;; Leading term | 
|---|
| 62 | (defgeneric leading-term (object) | 
|---|
| 63 | (:method ((self poly)) | 
|---|
| 64 | (car (poly-termlist self))) | 
|---|
| 65 | (:documentation "The leading term of a polynomial, or NIL for zero polynomial.")) | 
|---|
| 66 |  | 
|---|
| 67 | ;; Second term | 
|---|
| 68 | (defgeneric second-leading-term (object) | 
|---|
| 69 | (:method ((self poly)) | 
|---|
| 70 | (cadar (poly-termlist self))) | 
|---|
| 71 | (:documentation "The second leading term of a polynomial, or NIL for a polynomial with at most one term.")) | 
|---|
| 72 |  | 
|---|
| 73 | ;; Leading coefficient | 
|---|
| 74 | (defgeneric leading-coefficient (object) | 
|---|
| 75 | (:method ((self poly)) | 
|---|
| 76 | (r-coeff (leading-term self))) | 
|---|
| 77 | (:documentation "The leading coefficient of a polynomial. It signals error for a zero polynomial.")) | 
|---|
| 78 |  | 
|---|
| 79 | ;; Second coefficient | 
|---|
| 80 | (defgeneric second-leading-coefficient (object) | 
|---|
| 81 | (:method ((self poly)) | 
|---|
| 82 | (r-coeff (second-leading-term self))) | 
|---|
| 83 | (:documentation "The second leading coefficient of a polynomial. It signals error for a polynomial with at most one term.")) | 
|---|
| 84 |  | 
|---|
| 85 | ;; Testing for a zero polynomial | 
|---|
| 86 | (defmethod r-zerop ((self poly)) | 
|---|
| 87 | (null (poly-termlist self))) | 
|---|
| 88 |  | 
|---|
| 89 | ;; The number of terms | 
|---|
| 90 | (defmethod r-length ((self poly)) | 
|---|
| 91 | (length (poly-termlist self))) | 
|---|
| 92 |  | 
|---|
| 93 | (defmethod multiply-by ((self poly) (other monom)) | 
|---|
| 94 | (mapc #'(lambda (term) (multiply-by term other)) | 
|---|
| 95 | (poly-termlist self)) | 
|---|
| 96 | self) | 
|---|
| 97 |  | 
|---|
| 98 | (defmethod multiply-by ((self poly) (other scalar)) | 
|---|
| 99 | (mapc #'(lambda (term) (multiply-by term other)) | 
|---|
| 100 | (poly-termlist self)) | 
|---|
| 101 | self) | 
|---|
| 102 |  | 
|---|
| 103 |  | 
|---|
| 104 | (defmacro fast-add/subtract (p q order-fn add/subtract-fn uminus-fn) | 
|---|
| 105 | "Return an expression which will efficiently adds/subtracts two | 
|---|
| 106 | polynomials, P and Q.  The addition/subtraction of coefficients is | 
|---|
| 107 | performed by calling ADD/SUBTRACT-METHOD-NAME.  If UMINUS-METHOD-NAME | 
|---|
| 108 | is supplied, it is used to negate the coefficients of Q which do not | 
|---|
| 109 | have a corresponding coefficient in P. The code implements an | 
|---|
| 110 | efficient algorithm to add two polynomials represented as sorted lists | 
|---|
| 111 | of terms. The code destroys both arguments, reusing the terms to build | 
|---|
| 112 | the result." | 
|---|
| 113 | `(macrolet ((lc (x) `(r-coeff (car ,x)))) | 
|---|
| 114 | (do ((p ,p) | 
|---|
| 115 | (q ,q) | 
|---|
| 116 | r) | 
|---|
| 117 | ((or (endp p) (endp q)) | 
|---|
| 118 | ;; NOTE: R contains the result in reverse order. Can it | 
|---|
| 119 | ;; be more efficient to produce the terms in correct order? | 
|---|
| 120 | (unless (endp q) | 
|---|
| 121 | ;; Upon subtraction, we must change the sign of | 
|---|
| 122 | ;; all coefficients in q | 
|---|
| 123 | ,@(when uminus-fn | 
|---|
| 124 | `((mapc #'(lambda (x) (setf x (funcall ,uminus-fn x))) q))) | 
|---|
| 125 | (setf r (nreconc r q))) | 
|---|
| 126 | r) | 
|---|
| 127 | (multiple-value-bind | 
|---|
| 128 | (greater-p equal-p) | 
|---|
| 129 | (funcall ,order-fn (car p) (car q)) | 
|---|
| 130 | (cond | 
|---|
| 131 | (greater-p | 
|---|
| 132 | (rotatef (cdr p) r p) | 
|---|
| 133 | ) | 
|---|
| 134 | (equal-p | 
|---|
| 135 | (let ((s (funcall ,add/subtract-fn (lc p) (lc q)))) | 
|---|
| 136 | (cond | 
|---|
| 137 | ((r-zerop s) | 
|---|
| 138 | (setf p (cdr p)) | 
|---|
| 139 | ) | 
|---|
| 140 | (t | 
|---|
| 141 | (setf (lc p) s) | 
|---|
| 142 | (rotatef (cdr p) r p)))) | 
|---|
| 143 | (setf q (cdr q)) | 
|---|
| 144 | ) | 
|---|
| 145 | (t | 
|---|
| 146 | ;;Negate the term of Q if UMINUS provided, signallig | 
|---|
| 147 | ;;that we are doing subtraction | 
|---|
| 148 | ,@(when uminus-fn | 
|---|
| 149 | `((setf (lc q) (funcall ,uminus-fn (lc q))))) | 
|---|
| 150 | (rotatef (cdr q) r q))))))) | 
|---|
| 151 |  | 
|---|
| 152 |  | 
|---|
| 153 | (defmacro def-add/subtract-method (add/subtract-method-name | 
|---|
| 154 | uminus-method-name | 
|---|
| 155 | &optional | 
|---|
| 156 | (doc-string nil doc-string-supplied-p)) | 
|---|
| 157 | "This macro avoids code duplication for two similar operations: ADD-TO and SUBTRACT-FROM." | 
|---|
| 158 | `(defmethod ,add/subtract-method-name ((self poly) (other poly)) | 
|---|
| 159 | ,@(when doc-string-supplied-p `(,doc-string)) | 
|---|
| 160 | ;; Ensure orders are compatible | 
|---|
| 161 | (unless (eq (poly-term-order self) (poly-term-order other)) | 
|---|
| 162 | (setf (poly-termlist other) (sort (poly-termlist other) (poly-term-order self)) | 
|---|
| 163 | (poly-term-order other) (poly-term-order self))) | 
|---|
| 164 | (setf (poly-termlist self) (fast-add/subtract | 
|---|
| 165 | (poly-termlist self) (poly-termlist other) | 
|---|
| 166 | (poly-term-order self) | 
|---|
| 167 | #',add/subtract-method-name | 
|---|
| 168 | ,(when uminus-method-name `(function ,uminus-method-name)))) | 
|---|
| 169 | self)) | 
|---|
| 170 |  | 
|---|
| 171 | (eval-when (:compile-toplevel :load-toplevel :execute) | 
|---|
| 172 |  | 
|---|
| 173 | (def-add/subtract-method add-to nil | 
|---|
| 174 | "Adds to polynomial SELF another polynomial OTHER. | 
|---|
| 175 | This operation destructively modifies both polynomials. | 
|---|
| 176 | The result is stored in SELF. This implementation does | 
|---|
| 177 | no consing, entirely reusing the sells of SELF and OTHER.") | 
|---|
| 178 |  | 
|---|
| 179 | (def-add/subtract-method subtract-from unary-minus | 
|---|
| 180 | "Subtracts from polynomial SELF another polynomial OTHER. | 
|---|
| 181 | This operation destructively modifies both polynomials. | 
|---|
| 182 | The result is stored in SELF. This implementation does | 
|---|
| 183 | no consing, entirely reusing the sells of SELF and OTHER.") | 
|---|
| 184 |  | 
|---|
| 185 | ) | 
|---|
| 186 |  | 
|---|
| 187 | (defmethod unary-minus ((self poly)) | 
|---|
| 188 | "Destructively modifies the coefficients of the polynomial SELF, | 
|---|
| 189 | by changing their sign." | 
|---|
| 190 | (mapc #'unary-minus (poly-termlist self)) | 
|---|
| 191 | self) | 
|---|
| 192 |  | 
|---|
| 193 |  | 
|---|
| 194 | (defun multiply-term-by-termlist-dropping-zeros (term termlist) | 
|---|
| 195 | "A product of a term TERM by a list of term, TERMLIST. | 
|---|
| 196 | Takes into accound divisors of zero in the ring, by | 
|---|
| 197 | deleting zero terms." | 
|---|
| 198 | (mapcan #'(lambda (other-term) | 
|---|
| 199 | (let ((prod (term-multiply term other-term))) | 
|---|
| 200 | (cond | 
|---|
| 201 | ((r-zerop prod) nil) | 
|---|
| 202 | (t (list prod))))) | 
|---|
| 203 | termlist)) | 
|---|
| 204 |  | 
|---|
| 205 | (defun multiply-termlist-by-term-dropping-zeros (termlist term) | 
|---|
| 206 | "A product of a termlist TERMLIST by a term TERM> | 
|---|
| 207 | Takes into accound divisors of zero in the ring, by | 
|---|
| 208 | deleting zero terms." | 
|---|
| 209 | (mapcan #'(lambda (other-term) | 
|---|
| 210 | (let ((prod (term-multiply other-term term))) | 
|---|
| 211 | (cond | 
|---|
| 212 | ((r-zerop prod) nil) | 
|---|
| 213 | (t (list prod))))) | 
|---|
| 214 | termlist)) | 
|---|
| 215 |  | 
|---|
| 216 |  | 
|---|
| 217 | (defun multiply-termlists (p q) | 
|---|
| 218 | (cond | 
|---|
| 219 | ((or (endp p) (endp q)) nil)        ;p or q is 0 (represented by NIL) | 
|---|
| 220 | ;; If p= p0+p1 and q=q0+q1 then p*q=p0*q0+p0*q1+p1*q | 
|---|
| 221 | ((endp (cdr p)) | 
|---|
| 222 | (multiply-term-by-termlist (car p) q) | 
|---|
| 223 | ((endp (cdr q)) | 
|---|
| 224 | (multiply-termlist-by-term p (car q)) | 
|---|
| 225 | (t | 
|---|
| 226 | (let ((head (multiply-terms (car p) (car q))) | 
|---|
| 227 | (tail (add-termlists | 
|---|
| 228 | (multiply-term-by-termlist-dropping-zeros (car p) (cdr q)) | 
|---|
| 229 | (multiply-termlists (cdr p) q)))) | 
|---|
| 230 |  | 
|---|
| 231 | (nconc head tail))))))) | 
|---|
| 232 |  | 
|---|
| 233 | #| | 
|---|
| 234 |  | 
|---|
| 235 | (defun poly-standard-extension (plist &aux (k (length plist))) | 
|---|
| 236 | "Calculate [U1*P1,U2*P2,...,UK*PK], where PLIST=[P1,P2,...,PK] | 
|---|
| 237 | is a list of polynomials." | 
|---|
| 238 | (declare (list plist) (fixnum k)) | 
|---|
| 239 | (labels ((incf-power (g i) | 
|---|
| 240 | (dolist (x (poly-termlist g)) | 
|---|
| 241 | (incf (monom-elt (term-monom x) i))) | 
|---|
| 242 | (incf (poly-sugar g)))) | 
|---|
| 243 | (setf plist (poly-list-add-variables plist k)) | 
|---|
| 244 | (dotimes (i k plist) | 
|---|
| 245 | (incf-power (nth i plist) i)))) | 
|---|
| 246 |  | 
|---|
| 247 |  | 
|---|
| 248 |  | 
|---|
| 249 | (defun saturation-extension (ring f plist | 
|---|
| 250 | &aux | 
|---|
| 251 | (k (length plist)) | 
|---|
| 252 | (d (monom-dimension (poly-lm (car plist)))) | 
|---|
| 253 | f-x plist-x) | 
|---|
| 254 | "Calculate [F, U1*P1-1,U2*P2-1,...,UK*PK-1], where PLIST=[P1,P2,...,PK]." | 
|---|
| 255 | (declare (type ring ring)) | 
|---|
| 256 | (setf f-x (poly-list-add-variables f k) | 
|---|
| 257 | plist-x (mapcar #'(lambda (x) | 
|---|
| 258 | (setf (poly-termlist x) | 
|---|
| 259 | (nconc (poly-termlist x) | 
|---|
| 260 | (list (make-term :monom (make-monom :dimension d) | 
|---|
| 261 | :coeff (funcall (ring-uminus ring) | 
|---|
| 262 | (funcall (ring-unit ring))))))) | 
|---|
| 263 | x) | 
|---|
| 264 | (poly-standard-extension plist))) | 
|---|
| 265 | (append f-x plist-x)) | 
|---|
| 266 |  | 
|---|
| 267 |  | 
|---|
| 268 | (defun polysaturation-extension (ring f plist | 
|---|
| 269 | &aux | 
|---|
| 270 | (k (length plist)) | 
|---|
| 271 | (d (+ k (monom-dimension (poly-lm (car plist))))) | 
|---|
| 272 | ;; Add k variables to f | 
|---|
| 273 | (f (poly-list-add-variables f k)) | 
|---|
| 274 | ;; Set PLIST to [U1*P1,U2*P2,...,UK*PK] | 
|---|
| 275 | (plist (apply #'poly-append (poly-standard-extension plist)))) | 
|---|
| 276 | "Calculate [F, U1*P1+U2*P2+...+UK*PK-1], where PLIST=[P1,P2,...,PK]. It destructively modifies F." | 
|---|
| 277 | ;; Add -1 as the last term | 
|---|
| 278 | (declare (type ring ring)) | 
|---|
| 279 | (setf (cdr (last (poly-termlist plist))) | 
|---|
| 280 | (list (make-term :monom (make-monom :dimension d) | 
|---|
| 281 | :coeff (funcall (ring-uminus ring) (funcall (ring-unit ring)))))) | 
|---|
| 282 | (append f (list plist))) | 
|---|
| 283 |  | 
|---|
| 284 | (defun saturation-extension-1 (ring f p) | 
|---|
| 285 | "Calculate [F, U*P-1]. It destructively modifies F." | 
|---|
| 286 | (declare (type ring ring)) | 
|---|
| 287 | (polysaturation-extension ring f (list p))) | 
|---|
| 288 |  | 
|---|
| 289 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
| 290 | ;; | 
|---|
| 291 | ;; Evaluation of polynomial (prefix) expressions | 
|---|
| 292 | ;; | 
|---|
| 293 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
| 294 |  | 
|---|
| 295 | (defun coerce-coeff (ring expr vars) | 
|---|
| 296 | "Coerce an element of the coefficient ring to a constant polynomial." | 
|---|
| 297 | ;; Modular arithmetic handler by rat | 
|---|
| 298 | (declare (type ring ring)) | 
|---|
| 299 | (make-poly-from-termlist (list (make-term :monom (make-monom :dimension (length vars)) | 
|---|
| 300 | :coeff (funcall (ring-parse ring) expr))) | 
|---|
| 301 | 0)) | 
|---|
| 302 |  | 
|---|
| 303 | (defun poly-eval (expr vars | 
|---|
| 304 | &optional | 
|---|
| 305 | (ring +ring-of-integers+) | 
|---|
| 306 | (order #'lex>) | 
|---|
| 307 | (list-marker :[) | 
|---|
| 308 | &aux | 
|---|
| 309 | (ring-and-order (make-ring-and-order :ring ring :order order))) | 
|---|
| 310 | "Evaluate Lisp form EXPR to a polynomial or a list of polynomials in | 
|---|
| 311 | variables VARS. Return the resulting polynomial or list of | 
|---|
| 312 | polynomials.  Standard arithmetical operators in form EXPR are | 
|---|
| 313 | replaced with their analogues in the ring of polynomials, and the | 
|---|
| 314 | resulting expression is evaluated, resulting in a polynomial or a list | 
|---|
| 315 | of polynomials in internal form. A similar operation in another computer | 
|---|
| 316 | algebra system could be called 'expand' or so." | 
|---|
| 317 | (declare (type ring ring)) | 
|---|
| 318 | (labels ((p-eval (arg) (poly-eval arg vars ring order)) | 
|---|
| 319 | (p-eval-scalar (arg) (poly-eval-scalar arg)) | 
|---|
| 320 | (p-eval-list (args) (mapcar #'p-eval args)) | 
|---|
| 321 | (p-add (x y) (poly-add ring-and-order x y))) | 
|---|
| 322 | (cond | 
|---|
| 323 | ((null expr) (error "Empty expression")) | 
|---|
| 324 | ((eql expr 0) (make-poly-zero)) | 
|---|
| 325 | ((member expr vars :test #'equalp) | 
|---|
| 326 | (let ((pos (position expr vars :test #'equalp))) | 
|---|
| 327 | (make-poly-variable ring (length vars) pos))) | 
|---|
| 328 | ((atom expr) | 
|---|
| 329 | (coerce-coeff ring expr vars)) | 
|---|
| 330 | ((eq (car expr) list-marker) | 
|---|
| 331 | (cons list-marker (p-eval-list (cdr expr)))) | 
|---|
| 332 | (t | 
|---|
| 333 | (case (car expr) | 
|---|
| 334 | (+ (reduce #'p-add (p-eval-list (cdr expr)))) | 
|---|
| 335 | (- (case (length expr) | 
|---|
| 336 | (1 (make-poly-zero)) | 
|---|
| 337 | (2 (poly-uminus ring (p-eval (cadr expr)))) | 
|---|
| 338 | (3 (poly-sub ring-and-order (p-eval (cadr expr)) (p-eval (caddr expr)))) | 
|---|
| 339 | (otherwise (poly-sub ring-and-order (p-eval (cadr expr)) | 
|---|
| 340 | (reduce #'p-add (p-eval-list (cddr expr))))))) | 
|---|
| 341 | (* | 
|---|
| 342 | (if (endp (cddr expr))                ;unary | 
|---|
| 343 | (p-eval (cdr expr)) | 
|---|
| 344 | (reduce #'(lambda (p q) (poly-mul ring-and-order p q)) (p-eval-list (cdr expr))))) | 
|---|
| 345 | (/ | 
|---|
| 346 | ;; A polynomial can be divided by a scalar | 
|---|
| 347 | (cond | 
|---|
| 348 | ((endp (cddr expr)) | 
|---|
| 349 | ;; A special case (/ ?), the inverse | 
|---|
| 350 | (coerce-coeff ring (apply (ring-div ring) (cdr expr)) vars)) | 
|---|
| 351 | (t | 
|---|
| 352 | (let ((num (p-eval (cadr expr))) | 
|---|
| 353 | (denom-inverse (apply (ring-div ring) | 
|---|
| 354 | (cons (funcall (ring-unit ring)) | 
|---|
| 355 | (mapcar #'p-eval-scalar (cddr expr)))))) | 
|---|
| 356 | (scalar-times-poly ring denom-inverse num))))) | 
|---|
| 357 | (expt | 
|---|
| 358 | (cond | 
|---|
| 359 | ((member (cadr expr) vars :test #'equalp) | 
|---|
| 360 | ;;Special handling of (expt var pow) | 
|---|
| 361 | (let ((pos (position (cadr expr) vars :test #'equalp))) | 
|---|
| 362 | (make-poly-variable ring (length vars) pos (caddr expr)))) | 
|---|
| 363 | ((not (and (integerp (caddr expr)) (plusp (caddr expr)))) | 
|---|
| 364 | ;; Negative power means division in coefficient ring | 
|---|
| 365 | ;; Non-integer power means non-polynomial coefficient | 
|---|
| 366 | (coerce-coeff ring expr vars)) | 
|---|
| 367 | (t (poly-expt ring-and-order (p-eval (cadr expr)) (caddr expr))))) | 
|---|
| 368 | (otherwise | 
|---|
| 369 | (coerce-coeff ring expr vars))))))) | 
|---|
| 370 |  | 
|---|
| 371 | (defun poly-eval-scalar (expr | 
|---|
| 372 | &optional | 
|---|
| 373 | (ring +ring-of-integers+) | 
|---|
| 374 | &aux | 
|---|
| 375 | (order #'lex>)) | 
|---|
| 376 | "Evaluate a scalar expression EXPR in ring RING." | 
|---|
| 377 | (declare (type ring ring)) | 
|---|
| 378 | (poly-lc (poly-eval expr nil ring order))) | 
|---|
| 379 |  | 
|---|
| 380 | (defun spoly (ring-and-order f g | 
|---|
| 381 | &aux | 
|---|
| 382 | (ring (ro-ring ring-and-order))) | 
|---|
| 383 | "It yields the S-polynomial of polynomials F and G." | 
|---|
| 384 | (declare (type ring-and-order ring-and-order) (type poly f g)) | 
|---|
| 385 | (let* ((lcm (monom-lcm (poly-lm f) (poly-lm g))) | 
|---|
| 386 | (mf (monom-div lcm (poly-lm f))) | 
|---|
| 387 | (mg (monom-div lcm (poly-lm g)))) | 
|---|
| 388 | (declare (type monom mf mg)) | 
|---|
| 389 | (multiple-value-bind (c cf cg) | 
|---|
| 390 | (funcall (ring-ezgcd ring) (poly-lc f) (poly-lc g)) | 
|---|
| 391 | (declare (ignore c)) | 
|---|
| 392 | (poly-sub | 
|---|
| 393 | ring-and-order | 
|---|
| 394 | (scalar-times-poly ring cg (monom-times-poly mf f)) | 
|---|
| 395 | (scalar-times-poly ring cf (monom-times-poly mg g)))))) | 
|---|
| 396 |  | 
|---|
| 397 |  | 
|---|
| 398 | (defun poly-primitive-part (ring p) | 
|---|
| 399 | "Divide polynomial P with integer coefficients by gcd of its | 
|---|
| 400 | coefficients and return the result." | 
|---|
| 401 | (declare (type ring ring) (type poly p)) | 
|---|
| 402 | (if (poly-zerop p) | 
|---|
| 403 | (values p 1) | 
|---|
| 404 | (let ((c (poly-content ring p))) | 
|---|
| 405 | (values (make-poly-from-termlist | 
|---|
| 406 | (mapcar | 
|---|
| 407 | #'(lambda (x) | 
|---|
| 408 | (make-term :monom (term-monom x) | 
|---|
| 409 | :coeff (funcall (ring-div ring) (term-coeff x) c))) | 
|---|
| 410 | (poly-termlist p)) | 
|---|
| 411 | (poly-sugar p)) | 
|---|
| 412 | c)))) | 
|---|
| 413 |  | 
|---|
| 414 | (defun poly-content (ring p) | 
|---|
| 415 | "Greatest common divisor of the coefficients of the polynomial P. Use the RING structure | 
|---|
| 416 | to compute the greatest common divisor." | 
|---|
| 417 | (declare (type ring ring) (type poly p)) | 
|---|
| 418 | (reduce (ring-gcd ring) (mapcar #'term-coeff (rest (poly-termlist p))) :initial-value (poly-lc p))) | 
|---|
| 419 |  | 
|---|
| 420 | (defun read-infix-form (&key (stream t)) | 
|---|
| 421 | "Parser of infix expressions with integer/rational coefficients | 
|---|
| 422 | The parser will recognize two kinds of polynomial expressions: | 
|---|
| 423 |  | 
|---|
| 424 | - polynomials in fully expanded forms with coefficients | 
|---|
| 425 | written in front of symbolic expressions; constants can be optionally | 
|---|
| 426 | enclosed in (); for example, the infix form | 
|---|
| 427 | X^2-Y^2+(-4/3)*U^2*W^3-5 | 
|---|
| 428 | parses to | 
|---|
| 429 | (+ (- (EXPT X 2) (EXPT Y 2)) (* (- (/ 4 3)) (EXPT U 2) (EXPT W 3)) (- 5)) | 
|---|
| 430 |  | 
|---|
| 431 | - lists of polynomials; for example | 
|---|
| 432 | [X-Y, X^2+3*Z] | 
|---|
| 433 | parses to | 
|---|
| 434 | (:[ (- X Y) (+ (EXPT X 2) (* 3 Z))) | 
|---|
| 435 | where the first symbol [ marks a list of polynomials. | 
|---|
| 436 |  | 
|---|
| 437 | -other infix expressions, for example | 
|---|
| 438 | [(X-Y)*(X+Y)/Z,(X+1)^2] | 
|---|
| 439 | parses to: | 
|---|
| 440 | (:[ (/ (* (- X Y) (+ X Y)) Z) (EXPT (+ X 1) 2)) | 
|---|
| 441 | Currently this function is implemented using M. Kantrowitz's INFIX package." | 
|---|
| 442 | (read-from-string | 
|---|
| 443 | (concatenate 'string | 
|---|
| 444 | "#I(" | 
|---|
| 445 | (with-output-to-string (s) | 
|---|
| 446 | (loop | 
|---|
| 447 | (multiple-value-bind (line eof) | 
|---|
| 448 | (read-line stream t) | 
|---|
| 449 | (format s "~A" line) | 
|---|
| 450 | (when eof (return))))) | 
|---|
| 451 | ")"))) | 
|---|
| 452 |  | 
|---|
| 453 | (defun read-poly (vars &key | 
|---|
| 454 | (stream t) | 
|---|
| 455 | (ring +ring-of-integers+) | 
|---|
| 456 | (order #'lex>)) | 
|---|
| 457 | "Reads an expression in prefix form from a stream STREAM. | 
|---|
| 458 | The expression read from the strem should represent a polynomial or a | 
|---|
| 459 | list of polynomials in variables VARS, over the ring RING.  The | 
|---|
| 460 | polynomial or list of polynomials is returned, with terms in each | 
|---|
| 461 | polynomial ordered according to monomial order ORDER." | 
|---|
| 462 | (poly-eval (read-infix-form :stream stream) vars ring order)) | 
|---|
| 463 |  | 
|---|
| 464 | (defun string->poly (str vars | 
|---|
| 465 | &optional | 
|---|
| 466 | (ring +ring-of-integers+) | 
|---|
| 467 | (order #'lex>)) | 
|---|
| 468 | "Converts a string STR to a polynomial in variables VARS." | 
|---|
| 469 | (with-input-from-string (s str) | 
|---|
| 470 | (read-poly vars :stream s :ring ring :order order))) | 
|---|
| 471 |  | 
|---|
| 472 | (defun poly->alist (p) | 
|---|
| 473 | "Convert a polynomial P to an association list. Thus, the format of the | 
|---|
| 474 | returned value is  ((MONOM[0] . COEFF[0]) (MONOM[1] . COEFF[1]) ...), where | 
|---|
| 475 | MONOM[I] is a list of exponents in the monomial and COEFF[I] is the | 
|---|
| 476 | corresponding coefficient in the ring." | 
|---|
| 477 | (cond | 
|---|
| 478 | ((poly-p p) | 
|---|
| 479 | (mapcar #'term->cons (poly-termlist p))) | 
|---|
| 480 | ((and (consp p) (eq (car p) :[)) | 
|---|
| 481 | (cons :[ (mapcar #'poly->alist (cdr p)))))) | 
|---|
| 482 |  | 
|---|
| 483 | (defun string->alist (str vars | 
|---|
| 484 | &optional | 
|---|
| 485 | (ring +ring-of-integers+) | 
|---|
| 486 | (order #'lex>)) | 
|---|
| 487 | "Convert a string STR representing a polynomial or polynomial list to | 
|---|
| 488 | an association list (... (MONOM . COEFF) ...)." | 
|---|
| 489 | (poly->alist (string->poly str vars ring order))) | 
|---|
| 490 |  | 
|---|
| 491 | (defun poly-equal-no-sugar-p (p q) | 
|---|
| 492 | "Compare polynomials for equality, ignoring sugar." | 
|---|
| 493 | (declare (type poly p q)) | 
|---|
| 494 | (equalp (poly-termlist p) (poly-termlist q))) | 
|---|
| 495 |  | 
|---|
| 496 | (defun poly-set-equal-no-sugar-p (p q) | 
|---|
| 497 | "Compare polynomial sets P and Q for equality, ignoring sugar." | 
|---|
| 498 | (null (set-exclusive-or  p q :test #'poly-equal-no-sugar-p ))) | 
|---|
| 499 |  | 
|---|
| 500 | (defun poly-list-equal-no-sugar-p (p q) | 
|---|
| 501 | "Compare polynomial lists P and Q for equality, ignoring sugar." | 
|---|
| 502 | (every #'poly-equal-no-sugar-p p q)) | 
|---|
| 503 | |# | 
|---|