close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/polynomial.lisp@ 2769

Last change on this file since 2769 was 2769, checked in by Marek Rychlik, 10 years ago

* empty log message *

File size: 16.4 KB
Line 
1;;; -*- Mode: Lisp -*-
2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
22(defpackage "POLYNOMIAL"
23 (:use :cl :ring :monom :order :term #| :infix |# )
24 (:export "POLY"
25 "POLY-TERMLIST"
26 "POLY-TERM-ORDER")
27 (:documentation "Implements polynomials"))
28
29(in-package :polynomial)
30
31(proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0)))
32
33(defclass poly ()
34 ((termlist :initarg :termlist :accessor poly-termlist
35 :documentation "List of terms.")
36 (order :initarg :order :accessor poly-term-order
37 :documentation "Monomial/term order."))
38 (:default-initargs :termlist nil :order #'lex>)
39 (:documentation "A polynomial with a list of terms TERMLIST, ordered
40according to term order ORDER, which defaults to LEX>."))
41
42(defmethod print-object ((self poly) stream)
43 (format stream "#<POLY TERMLIST=~A ORDER=~A>"
44 (poly-termlist self)
45 (poly-term-order self)))
46
47(defmethod r-equalp ((self poly) (other poly))
48 "POLY instances are R-EQUALP if they have the same
49order and if all terms are R-EQUALP."
50 (and (every #'r-equalp (poly-termlist self) (poly-termlist other))
51 (eq (poly-term-order self) (poly-term-order other))))
52
53(defmethod insert-item ((self poly) (item term))
54 (push item (poly-termlist self))
55 self)
56
57(defmethod append-item ((self poly) (item term))
58 (setf (cdr (last (poly-termlist self))) (list item))
59 self)
60
61;; Leading term
62(defgeneric leading-term (object)
63 (:method ((self poly))
64 (car (poly-termlist self)))
65 (:documentation "The leading term of a polynomial, or NIL for zero polynomial."))
66
67;; Second term
68(defgeneric second-leading-term (object)
69 (:method ((self poly))
70 (cadar (poly-termlist self)))
71 (:documentation "The second leading term of a polynomial, or NIL for a polynomial with at most one term."))
72
73;; Leading coefficient
74(defgeneric leading-coefficient (object)
75 (:method ((self poly))
76 (r-coeff (leading-term self)))
77 (:documentation "The leading coefficient of a polynomial. It signals error for a zero polynomial."))
78
79;; Second coefficient
80(defgeneric second-leading-coefficient (object)
81 (:method ((self poly))
82 (r-coeff (second-leading-term self)))
83 (:documentation "The second leading coefficient of a polynomial. It signals error for a polynomial with at most one term."))
84
85;; Testing for a zero polynomial
86(defmethod r-zerop ((self poly))
87 (null (poly-termlist self)))
88
89;; The number of terms
90(defmethod r-length ((self poly))
91 (length (poly-termlist self)))
92
93(defmethod multiply-by ((self poly) (other monom))
94 (mapc #'(lambda (term) (multiply-by term other))
95 (poly-termlist self))
96 self)
97
98(defmethod multiply-by ((self poly) (other scalar))
99 (mapc #'(lambda (term) (multiply-by term other))
100 (poly-termlist self))
101 self)
102
103
104(defmacro fast-add/subtract (p q order-fn add/subtract-fn uminus-fn)
105 "Return an expression which will efficiently adds/subtracts two
106polynomials, P and Q. The addition/subtraction of coefficients is
107performed by calling ADD/SUBTRACT-METHOD-NAME. If UMINUS-METHOD-NAME
108is supplied, it is used to negate the coefficients of Q which do not
109have a corresponding coefficient in P. The code implements an
110efficient algorithm to add two polynomials represented as sorted lists
111of terms. The code destroys both arguments, reusing the terms to build
112the result."
113 `(macrolet ((lc (x) `(r-coeff (car ,x))))
114 (do ((p ,p)
115 (q ,q)
116 r)
117 ((or (endp p) (endp q))
118 ;; NOTE: R contains the result in reverse order. Can it
119 ;; be more efficient to produce the terms in correct order?
120 (unless (endp q) (setf r (nreconc r q)))
121 r)
122 (multiple-value-bind
123 (greater-p equal-p)
124 (funcall ,order-fn (car p) (car q))
125 (cond
126 (greater-p
127 (rotatef (cdr p) r p)
128 )
129 (equal-p
130 (let ((s (funcall ,add/subtract-fn (lc p) (lc q))))
131 (cond
132 ((r-zerop s)
133 (setf p (cdr p))
134 )
135 (t
136 (setf (lc p) s)
137 (rotatef (cdr p) r p))))
138 (setf q (cdr q))
139 )
140 (t
141 ;;Negate the term of Q if UMINUS provided, signallig
142 ;;that we are doing subtraction
143 ,@(when uminus-fn
144 `((setf (lc q) (funcall ,uminus-fn (lc q)))))
145 (rotatef (cdr q) r q)))))))
146
147
148(defmacro def-add/subtract-method (add/subtract-method-name
149 uminus-method-name
150 &optional
151 (doc-string nil doc-string-supplied-p))
152 "This macro avoids code duplication for two similar operations: ADD-TO and SUBTRACT-FROM."
153 `(defmethod ,add/subtract-method-name ((self poly) (other poly))
154 ,@(when doc-string-supplied-p `(,doc-string))
155 ;; Ensure orders are compatible
156 (unless (eq (poly-term-order order1) (poly-term-order order2))
157 (setf (poly-termlist other) (sort (poly-termlist other) (poly-term-order self))
158 (poly-term-order other (poly-term-order self))))
159 (setf (poly-termlist self)
160 (fast-add/subtract
161 (poly-termlist self)
162 (poly-termlist other)
163 (poly-term-order self)
164 #',add/subtract-method-name
165 ,(when uminus-method-name `(function ,uminus-method-name))))
166 self))
167
168(def-add/subtract-method add-to nil
169 "Adds to polynomial SELF another polynomial OTHER.
170This operation destructively modifies both polynomials.
171The result is stored in SELF. This implementation does
172no consing, entirely reusing the sells of SELF and OTHER.")
173
174(def-add/subtract-method subtract-from unary-minus
175 "Subtracts from polynomial SELF another polynomial OTHER.
176This operation destructively modifies both polynomials.
177The result is stored in SELF. This implementation does
178no consing, entirely reusing the sells of SELF and OTHER.")
179
180(defmethod unary-minus ((self poly))
181 "Destructively modifies the coefficients of the polynomial SELF,
182by changing their sign."
183 (mapc #'unary-minus (poly-termlist self))
184 self)
185
186#|
187
188(defun poly-standard-extension (plist &aux (k (length plist)))
189 "Calculate [U1*P1,U2*P2,...,UK*PK], where PLIST=[P1,P2,...,PK]
190is a list of polynomials."
191 (declare (list plist) (fixnum k))
192 (labels ((incf-power (g i)
193 (dolist (x (poly-termlist g))
194 (incf (monom-elt (term-monom x) i)))
195 (incf (poly-sugar g))))
196 (setf plist (poly-list-add-variables plist k))
197 (dotimes (i k plist)
198 (incf-power (nth i plist) i))))
199
200
201
202(defun saturation-extension (ring f plist
203 &aux
204 (k (length plist))
205 (d (monom-dimension (poly-lm (car plist))))
206 f-x plist-x)
207 "Calculate [F, U1*P1-1,U2*P2-1,...,UK*PK-1], where PLIST=[P1,P2,...,PK]."
208 (declare (type ring ring))
209 (setf f-x (poly-list-add-variables f k)
210 plist-x (mapcar #'(lambda (x)
211 (setf (poly-termlist x)
212 (nconc (poly-termlist x)
213 (list (make-term :monom (make-monom :dimension d)
214 :coeff (funcall (ring-uminus ring)
215 (funcall (ring-unit ring)))))))
216 x)
217 (poly-standard-extension plist)))
218 (append f-x plist-x))
219
220
221(defun polysaturation-extension (ring f plist
222 &aux
223 (k (length plist))
224 (d (+ k (monom-dimension (poly-lm (car plist)))))
225 ;; Add k variables to f
226 (f (poly-list-add-variables f k))
227 ;; Set PLIST to [U1*P1,U2*P2,...,UK*PK]
228 (plist (apply #'poly-append (poly-standard-extension plist))))
229 "Calculate [F, U1*P1+U2*P2+...+UK*PK-1], where PLIST=[P1,P2,...,PK]. It destructively modifies F."
230 ;; Add -1 as the last term
231 (declare (type ring ring))
232 (setf (cdr (last (poly-termlist plist)))
233 (list (make-term :monom (make-monom :dimension d)
234 :coeff (funcall (ring-uminus ring) (funcall (ring-unit ring))))))
235 (append f (list plist)))
236
237(defun saturation-extension-1 (ring f p)
238 "Calculate [F, U*P-1]. It destructively modifies F."
239 (declare (type ring ring))
240 (polysaturation-extension ring f (list p)))
241
242;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
243;;
244;; Evaluation of polynomial (prefix) expressions
245;;
246;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
247
248(defun coerce-coeff (ring expr vars)
249 "Coerce an element of the coefficient ring to a constant polynomial."
250 ;; Modular arithmetic handler by rat
251 (declare (type ring ring))
252 (make-poly-from-termlist (list (make-term :monom (make-monom :dimension (length vars))
253 :coeff (funcall (ring-parse ring) expr)))
254 0))
255
256(defun poly-eval (expr vars
257 &optional
258 (ring +ring-of-integers+)
259 (order #'lex>)
260 (list-marker :[)
261 &aux
262 (ring-and-order (make-ring-and-order :ring ring :order order)))
263 "Evaluate Lisp form EXPR to a polynomial or a list of polynomials in
264variables VARS. Return the resulting polynomial or list of
265polynomials. Standard arithmetical operators in form EXPR are
266replaced with their analogues in the ring of polynomials, and the
267resulting expression is evaluated, resulting in a polynomial or a list
268of polynomials in internal form. A similar operation in another computer
269algebra system could be called 'expand' or so."
270 (declare (type ring ring))
271 (labels ((p-eval (arg) (poly-eval arg vars ring order))
272 (p-eval-scalar (arg) (poly-eval-scalar arg))
273 (p-eval-list (args) (mapcar #'p-eval args))
274 (p-add (x y) (poly-add ring-and-order x y)))
275 (cond
276 ((null expr) (error "Empty expression"))
277 ((eql expr 0) (make-poly-zero))
278 ((member expr vars :test #'equalp)
279 (let ((pos (position expr vars :test #'equalp)))
280 (make-poly-variable ring (length vars) pos)))
281 ((atom expr)
282 (coerce-coeff ring expr vars))
283 ((eq (car expr) list-marker)
284 (cons list-marker (p-eval-list (cdr expr))))
285 (t
286 (case (car expr)
287 (+ (reduce #'p-add (p-eval-list (cdr expr))))
288 (- (case (length expr)
289 (1 (make-poly-zero))
290 (2 (poly-uminus ring (p-eval (cadr expr))))
291 (3 (poly-sub ring-and-order (p-eval (cadr expr)) (p-eval (caddr expr))))
292 (otherwise (poly-sub ring-and-order (p-eval (cadr expr))
293 (reduce #'p-add (p-eval-list (cddr expr)))))))
294 (*
295 (if (endp (cddr expr)) ;unary
296 (p-eval (cdr expr))
297 (reduce #'(lambda (p q) (poly-mul ring-and-order p q)) (p-eval-list (cdr expr)))))
298 (/
299 ;; A polynomial can be divided by a scalar
300 (cond
301 ((endp (cddr expr))
302 ;; A special case (/ ?), the inverse
303 (coerce-coeff ring (apply (ring-div ring) (cdr expr)) vars))
304 (t
305 (let ((num (p-eval (cadr expr)))
306 (denom-inverse (apply (ring-div ring)
307 (cons (funcall (ring-unit ring))
308 (mapcar #'p-eval-scalar (cddr expr))))))
309 (scalar-times-poly ring denom-inverse num)))))
310 (expt
311 (cond
312 ((member (cadr expr) vars :test #'equalp)
313 ;;Special handling of (expt var pow)
314 (let ((pos (position (cadr expr) vars :test #'equalp)))
315 (make-poly-variable ring (length vars) pos (caddr expr))))
316 ((not (and (integerp (caddr expr)) (plusp (caddr expr))))
317 ;; Negative power means division in coefficient ring
318 ;; Non-integer power means non-polynomial coefficient
319 (coerce-coeff ring expr vars))
320 (t (poly-expt ring-and-order (p-eval (cadr expr)) (caddr expr)))))
321 (otherwise
322 (coerce-coeff ring expr vars)))))))
323
324(defun poly-eval-scalar (expr
325 &optional
326 (ring +ring-of-integers+)
327 &aux
328 (order #'lex>))
329 "Evaluate a scalar expression EXPR in ring RING."
330 (declare (type ring ring))
331 (poly-lc (poly-eval expr nil ring order)))
332
333(defun spoly (ring-and-order f g
334 &aux
335 (ring (ro-ring ring-and-order)))
336 "It yields the S-polynomial of polynomials F and G."
337 (declare (type ring-and-order ring-and-order) (type poly f g))
338 (let* ((lcm (monom-lcm (poly-lm f) (poly-lm g)))
339 (mf (monom-div lcm (poly-lm f)))
340 (mg (monom-div lcm (poly-lm g))))
341 (declare (type monom mf mg))
342 (multiple-value-bind (c cf cg)
343 (funcall (ring-ezgcd ring) (poly-lc f) (poly-lc g))
344 (declare (ignore c))
345 (poly-sub
346 ring-and-order
347 (scalar-times-poly ring cg (monom-times-poly mf f))
348 (scalar-times-poly ring cf (monom-times-poly mg g))))))
349
350
351(defun poly-primitive-part (ring p)
352 "Divide polynomial P with integer coefficients by gcd of its
353coefficients and return the result."
354 (declare (type ring ring) (type poly p))
355 (if (poly-zerop p)
356 (values p 1)
357 (let ((c (poly-content ring p)))
358 (values (make-poly-from-termlist
359 (mapcar
360 #'(lambda (x)
361 (make-term :monom (term-monom x)
362 :coeff (funcall (ring-div ring) (term-coeff x) c)))
363 (poly-termlist p))
364 (poly-sugar p))
365 c))))
366
367(defun poly-content (ring p)
368 "Greatest common divisor of the coefficients of the polynomial P. Use the RING structure
369to compute the greatest common divisor."
370 (declare (type ring ring) (type poly p))
371 (reduce (ring-gcd ring) (mapcar #'term-coeff (rest (poly-termlist p))) :initial-value (poly-lc p)))
372
373(defun read-infix-form (&key (stream t))
374 "Parser of infix expressions with integer/rational coefficients
375The parser will recognize two kinds of polynomial expressions:
376
377- polynomials in fully expanded forms with coefficients
378 written in front of symbolic expressions; constants can be optionally
379 enclosed in (); for example, the infix form
380 X^2-Y^2+(-4/3)*U^2*W^3-5
381 parses to
382 (+ (- (EXPT X 2) (EXPT Y 2)) (* (- (/ 4 3)) (EXPT U 2) (EXPT W 3)) (- 5))
383
384- lists of polynomials; for example
385 [X-Y, X^2+3*Z]
386 parses to
387 (:[ (- X Y) (+ (EXPT X 2) (* 3 Z)))
388 where the first symbol [ marks a list of polynomials.
389
390-other infix expressions, for example
391 [(X-Y)*(X+Y)/Z,(X+1)^2]
392parses to:
393 (:[ (/ (* (- X Y) (+ X Y)) Z) (EXPT (+ X 1) 2))
394Currently this function is implemented using M. Kantrowitz's INFIX package."
395 (read-from-string
396 (concatenate 'string
397 "#I("
398 (with-output-to-string (s)
399 (loop
400 (multiple-value-bind (line eof)
401 (read-line stream t)
402 (format s "~A" line)
403 (when eof (return)))))
404 ")")))
405
406(defun read-poly (vars &key
407 (stream t)
408 (ring +ring-of-integers+)
409 (order #'lex>))
410 "Reads an expression in prefix form from a stream STREAM.
411The expression read from the strem should represent a polynomial or a
412list of polynomials in variables VARS, over the ring RING. The
413polynomial or list of polynomials is returned, with terms in each
414polynomial ordered according to monomial order ORDER."
415 (poly-eval (read-infix-form :stream stream) vars ring order))
416
417(defun string->poly (str vars
418 &optional
419 (ring +ring-of-integers+)
420 (order #'lex>))
421 "Converts a string STR to a polynomial in variables VARS."
422 (with-input-from-string (s str)
423 (read-poly vars :stream s :ring ring :order order)))
424
425(defun poly->alist (p)
426 "Convert a polynomial P to an association list. Thus, the format of the
427returned value is ((MONOM[0] . COEFF[0]) (MONOM[1] . COEFF[1]) ...), where
428MONOM[I] is a list of exponents in the monomial and COEFF[I] is the
429corresponding coefficient in the ring."
430 (cond
431 ((poly-p p)
432 (mapcar #'term->cons (poly-termlist p)))
433 ((and (consp p) (eq (car p) :[))
434 (cons :[ (mapcar #'poly->alist (cdr p))))))
435
436(defun string->alist (str vars
437 &optional
438 (ring +ring-of-integers+)
439 (order #'lex>))
440 "Convert a string STR representing a polynomial or polynomial list to
441an association list (... (MONOM . COEFF) ...)."
442 (poly->alist (string->poly str vars ring order)))
443
444(defun poly-equal-no-sugar-p (p q)
445 "Compare polynomials for equality, ignoring sugar."
446 (declare (type poly p q))
447 (equalp (poly-termlist p) (poly-termlist q)))
448
449(defun poly-set-equal-no-sugar-p (p q)
450 "Compare polynomial sets P and Q for equality, ignoring sugar."
451 (null (set-exclusive-or p q :test #'poly-equal-no-sugar-p )))
452
453(defun poly-list-equal-no-sugar-p (p q)
454 "Compare polynomial lists P and Q for equality, ignoring sugar."
455 (every #'poly-equal-no-sugar-p p q))
456|#
Note: See TracBrowser for help on using the repository browser.