close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/polynomial.lisp@ 2738

Last change on this file since 2738 was 2738, checked in by Marek Rychlik, 10 years ago

* empty log message *

File size: 16.0 KB
Line 
1;;; -*- Mode: Lisp -*-
2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
22(defpackage "POLYNOMIAL"
23 (:use :cl :ring :monom :order :term #| :infix |# )
24 (:export "POLY"
25 "POLY-TERMLIST"
26 "POLY-TERM-ORDER")
27 (:documentation "Implements polynomials"))
28
29(in-package :polynomial)
30
31(proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0)))
32
33(defclass poly ()
34 ((termlist :initarg :termlist :accessor poly-termlist
35 :documentation "List of terms.")
36 (order :initarg :order :accessor poly-term-order
37 :documentation "Monomial/term order."))
38 (:default-initargs :termlist nil :order #'lex>)
39 (:documentation "A polynomial with a list of terms TERMLIST, ordered
40according to term order ORDER, which defaults to LEX>."))
41
42(defmethod print-object ((self poly) stream)
43 (format stream "#<POLY TERMLIST=~A ORDER=~A>"
44 (poly-termlist self)
45 (poly-term-order self)))
46
47(defmethod r-equalp ((self poly) (other poly))
48 "POLY instances are R-EQUALP if they have the same
49order and if all terms are R-EQUALP."
50 (and (every #'r-equalp (poly-termlist self) (poly-termlist other))
51 (eq (poly-term-order self) (poly-term-order other))))
52
53(defmethod insert-item ((self poly) (item term))
54 (push item (poly-termlist self))
55 self)
56
57(defmethod append-item ((self poly) (item term))
58 (setf (cdr (last (poly-termlist self))) (list item))
59 self)
60
61;; Leading term
62(defgeneric leading-term (object)
63 (:method ((self poly))
64 (car (poly-termlist self)))
65 (:documentation "The leading term of a polynomial, or NIL for zero polynomial."))
66
67;; Second term
68(defgeneric second-leading-term (object)
69 (:method ((self poly))
70 (cadar (poly-termlist self)))
71 (:documentation "The second leading term of a polynomial, or NIL for a polynomial with at most one term."))
72
73;; Leading coefficient
74(defgeneric leading-coefficient (object)
75 (:method ((self poly))
76 (r-coeff (leading-term self)))
77 (:documentation "The leading coefficient of a polynomial. It signals error for a zero polynomial."))
78
79;; Second coefficient
80(defgeneric second-leading-coefficient (object)
81 (:method ((self poly))
82 (r-coeff (second-leading-term self)))
83 (:documentation "The second leading coefficient of a polynomial. It signals error for a polynomial with at most one term."))
84
85;; Testing for a zero polynomial
86(defmethod r-zerop ((self poly))
87 (null (poly-termlist self)))
88
89;; The number of terms
90(defmethod r-length ((self poly))
91 (length (poly-termlist self)))
92
93(defmethod multiply-by ((self poly) (other monom))
94 (mapc #'(lambda (term) (multiply-by term other))
95 (poly-termlist self))
96 self)
97
98(defmethod multiply-by ((self poly) (other scalar))
99 (mapc #'(lambda (term) (multiply-by term other))
100 (poly-termlist self))
101 self)
102
103
104(defmacro def-fast-add/subtract (order-fn add/subtract-fun &optional (uminus-fun nil uminus-fun-supplied-p))
105 "Returns the sum of two polynomials. Implements an efficient
106algorithm to add two polynomials represented as sorted lists of
107terms. This function destroys both arguments, reusing the terms to
108build the result."
109 `(lambda (p q)
110 (macrolet ((lc (x) `(r-coeff (car ,x))))
111 (do ((p p)
112 (q q)
113 r)
114 ((or (endp p) (endp q))
115 ;; NOTE: R contains the result in reverse order. Can it
116 ;; be more efficient to produce the terms in correct order?
117 (unless (endp q) (setf r (nreconc r q)))
118 r)
119 (multiple-value-bind
120 (greater-p equal-p)
121 (funcall ,order-fn (car p) (car q))
122 (cond
123 (greater-p
124 (rotatef (cdr p) r p)
125 )
126 (equal-p
127 (let ((s (funcall ,add/subtract-fun (lc p) (lc q))))
128 (cond
129 ((r-zerop s)
130 (setf p (cdr p))
131 )
132 (t
133 (setf (lc p) s)
134 (rotatef (cdr p) r p))))
135 (setf q (cdr q))
136 )
137 (t
138 ;;Negate the term of Q if UMINUS provided
139 ,@(when uminus-fun-supplied-p
140 `((setf (lc q) (funcall ,uminus-fun (lc q)))))
141 (rotatef (cdr q) r q))))))))
142
143
144(defmacro def-additive-operation-method (method-name &optional (doc-string nil doc-string-supplied-p))
145 "This macro avoids code duplication for two similar operations: ADD-TO and SUBTRACT-FROM."
146 `(defmethod ,method-name ((self poly) (other poly))
147 ,@(when doc-string-supplied-p `(,doc-string))
148 (with-slots ((termlist1 termlist) (order1 order))
149 self
150 (with-slots ((termlist2 termlist) (order2 order))
151 other
152 ;; Ensure orders are compatible
153 (unless (eq order1 order2)
154 (setf termlist2 (sort termlist2 order1)
155 order2 order1))
156 (setf termlist1 (fast-addition termlist1 termlist2 order1 #',method-name))))
157 self))
158
159(def-additive-operation-method add-to
160 "Adds to polynomial SELF another polynomial OTHER.
161This operation destructively modifies both polynomials.
162The result is stored in SELF. This implementation does
163no consing, entirely reusing the sells of SELF and OTHER.")
164
165(def-additive-operation-method subtract-from
166 "Subtracts from polynomial SELF another polynomial OTHER.
167This operation destructively modifies both polynomials.
168The result is stored in SELF. This implementation does
169no consing, entirely reusing the sells of SELF and OTHER.")
170
171
172(defmethod unary-minus ((self poly))
173 "Destructively modifies the coefficients of the polynomial SELF,
174by changing their sign."
175 (mapc #'unary-minus (poly-termlist self))
176 self)
177
178#|
179
180(defun poly-standard-extension (plist &aux (k (length plist)))
181 "Calculate [U1*P1,U2*P2,...,UK*PK], where PLIST=[P1,P2,...,PK]
182is a list of polynomials."
183 (declare (list plist) (fixnum k))
184 (labels ((incf-power (g i)
185 (dolist (x (poly-termlist g))
186 (incf (monom-elt (term-monom x) i)))
187 (incf (poly-sugar g))))
188 (setf plist (poly-list-add-variables plist k))
189 (dotimes (i k plist)
190 (incf-power (nth i plist) i))))
191
192
193
194(defun saturation-extension (ring f plist
195 &aux
196 (k (length plist))
197 (d (monom-dimension (poly-lm (car plist))))
198 f-x plist-x)
199 "Calculate [F, U1*P1-1,U2*P2-1,...,UK*PK-1], where PLIST=[P1,P2,...,PK]."
200 (declare (type ring ring))
201 (setf f-x (poly-list-add-variables f k)
202 plist-x (mapcar #'(lambda (x)
203 (setf (poly-termlist x)
204 (nconc (poly-termlist x)
205 (list (make-term :monom (make-monom :dimension d)
206 :coeff (funcall (ring-uminus ring)
207 (funcall (ring-unit ring)))))))
208 x)
209 (poly-standard-extension plist)))
210 (append f-x plist-x))
211
212
213(defun polysaturation-extension (ring f plist
214 &aux
215 (k (length plist))
216 (d (+ k (monom-dimension (poly-lm (car plist)))))
217 ;; Add k variables to f
218 (f (poly-list-add-variables f k))
219 ;; Set PLIST to [U1*P1,U2*P2,...,UK*PK]
220 (plist (apply #'poly-append (poly-standard-extension plist))))
221 "Calculate [F, U1*P1+U2*P2+...+UK*PK-1], where PLIST=[P1,P2,...,PK]. It destructively modifies F."
222 ;; Add -1 as the last term
223 (declare (type ring ring))
224 (setf (cdr (last (poly-termlist plist)))
225 (list (make-term :monom (make-monom :dimension d)
226 :coeff (funcall (ring-uminus ring) (funcall (ring-unit ring))))))
227 (append f (list plist)))
228
229(defun saturation-extension-1 (ring f p)
230 "Calculate [F, U*P-1]. It destructively modifies F."
231 (declare (type ring ring))
232 (polysaturation-extension ring f (list p)))
233
234;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
235;;
236;; Evaluation of polynomial (prefix) expressions
237;;
238;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
239
240(defun coerce-coeff (ring expr vars)
241 "Coerce an element of the coefficient ring to a constant polynomial."
242 ;; Modular arithmetic handler by rat
243 (declare (type ring ring))
244 (make-poly-from-termlist (list (make-term :monom (make-monom :dimension (length vars))
245 :coeff (funcall (ring-parse ring) expr)))
246 0))
247
248(defun poly-eval (expr vars
249 &optional
250 (ring +ring-of-integers+)
251 (order #'lex>)
252 (list-marker :[)
253 &aux
254 (ring-and-order (make-ring-and-order :ring ring :order order)))
255 "Evaluate Lisp form EXPR to a polynomial or a list of polynomials in
256variables VARS. Return the resulting polynomial or list of
257polynomials. Standard arithmetical operators in form EXPR are
258replaced with their analogues in the ring of polynomials, and the
259resulting expression is evaluated, resulting in a polynomial or a list
260of polynomials in internal form. A similar operation in another computer
261algebra system could be called 'expand' or so."
262 (declare (type ring ring))
263 (labels ((p-eval (arg) (poly-eval arg vars ring order))
264 (p-eval-scalar (arg) (poly-eval-scalar arg))
265 (p-eval-list (args) (mapcar #'p-eval args))
266 (p-add (x y) (poly-add ring-and-order x y)))
267 (cond
268 ((null expr) (error "Empty expression"))
269 ((eql expr 0) (make-poly-zero))
270 ((member expr vars :test #'equalp)
271 (let ((pos (position expr vars :test #'equalp)))
272 (make-poly-variable ring (length vars) pos)))
273 ((atom expr)
274 (coerce-coeff ring expr vars))
275 ((eq (car expr) list-marker)
276 (cons list-marker (p-eval-list (cdr expr))))
277 (t
278 (case (car expr)
279 (+ (reduce #'p-add (p-eval-list (cdr expr))))
280 (- (case (length expr)
281 (1 (make-poly-zero))
282 (2 (poly-uminus ring (p-eval (cadr expr))))
283 (3 (poly-sub ring-and-order (p-eval (cadr expr)) (p-eval (caddr expr))))
284 (otherwise (poly-sub ring-and-order (p-eval (cadr expr))
285 (reduce #'p-add (p-eval-list (cddr expr)))))))
286 (*
287 (if (endp (cddr expr)) ;unary
288 (p-eval (cdr expr))
289 (reduce #'(lambda (p q) (poly-mul ring-and-order p q)) (p-eval-list (cdr expr)))))
290 (/
291 ;; A polynomial can be divided by a scalar
292 (cond
293 ((endp (cddr expr))
294 ;; A special case (/ ?), the inverse
295 (coerce-coeff ring (apply (ring-div ring) (cdr expr)) vars))
296 (t
297 (let ((num (p-eval (cadr expr)))
298 (denom-inverse (apply (ring-div ring)
299 (cons (funcall (ring-unit ring))
300 (mapcar #'p-eval-scalar (cddr expr))))))
301 (scalar-times-poly ring denom-inverse num)))))
302 (expt
303 (cond
304 ((member (cadr expr) vars :test #'equalp)
305 ;;Special handling of (expt var pow)
306 (let ((pos (position (cadr expr) vars :test #'equalp)))
307 (make-poly-variable ring (length vars) pos (caddr expr))))
308 ((not (and (integerp (caddr expr)) (plusp (caddr expr))))
309 ;; Negative power means division in coefficient ring
310 ;; Non-integer power means non-polynomial coefficient
311 (coerce-coeff ring expr vars))
312 (t (poly-expt ring-and-order (p-eval (cadr expr)) (caddr expr)))))
313 (otherwise
314 (coerce-coeff ring expr vars)))))))
315
316(defun poly-eval-scalar (expr
317 &optional
318 (ring +ring-of-integers+)
319 &aux
320 (order #'lex>))
321 "Evaluate a scalar expression EXPR in ring RING."
322 (declare (type ring ring))
323 (poly-lc (poly-eval expr nil ring order)))
324
325(defun spoly (ring-and-order f g
326 &aux
327 (ring (ro-ring ring-and-order)))
328 "It yields the S-polynomial of polynomials F and G."
329 (declare (type ring-and-order ring-and-order) (type poly f g))
330 (let* ((lcm (monom-lcm (poly-lm f) (poly-lm g)))
331 (mf (monom-div lcm (poly-lm f)))
332 (mg (monom-div lcm (poly-lm g))))
333 (declare (type monom mf mg))
334 (multiple-value-bind (c cf cg)
335 (funcall (ring-ezgcd ring) (poly-lc f) (poly-lc g))
336 (declare (ignore c))
337 (poly-sub
338 ring-and-order
339 (scalar-times-poly ring cg (monom-times-poly mf f))
340 (scalar-times-poly ring cf (monom-times-poly mg g))))))
341
342
343(defun poly-primitive-part (ring p)
344 "Divide polynomial P with integer coefficients by gcd of its
345coefficients and return the result."
346 (declare (type ring ring) (type poly p))
347 (if (poly-zerop p)
348 (values p 1)
349 (let ((c (poly-content ring p)))
350 (values (make-poly-from-termlist
351 (mapcar
352 #'(lambda (x)
353 (make-term :monom (term-monom x)
354 :coeff (funcall (ring-div ring) (term-coeff x) c)))
355 (poly-termlist p))
356 (poly-sugar p))
357 c))))
358
359(defun poly-content (ring p)
360 "Greatest common divisor of the coefficients of the polynomial P. Use the RING structure
361to compute the greatest common divisor."
362 (declare (type ring ring) (type poly p))
363 (reduce (ring-gcd ring) (mapcar #'term-coeff (rest (poly-termlist p))) :initial-value (poly-lc p)))
364
365(defun read-infix-form (&key (stream t))
366 "Parser of infix expressions with integer/rational coefficients
367The parser will recognize two kinds of polynomial expressions:
368
369- polynomials in fully expanded forms with coefficients
370 written in front of symbolic expressions; constants can be optionally
371 enclosed in (); for example, the infix form
372 X^2-Y^2+(-4/3)*U^2*W^3-5
373 parses to
374 (+ (- (EXPT X 2) (EXPT Y 2)) (* (- (/ 4 3)) (EXPT U 2) (EXPT W 3)) (- 5))
375
376- lists of polynomials; for example
377 [X-Y, X^2+3*Z]
378 parses to
379 (:[ (- X Y) (+ (EXPT X 2) (* 3 Z)))
380 where the first symbol [ marks a list of polynomials.
381
382-other infix expressions, for example
383 [(X-Y)*(X+Y)/Z,(X+1)^2]
384parses to:
385 (:[ (/ (* (- X Y) (+ X Y)) Z) (EXPT (+ X 1) 2))
386Currently this function is implemented using M. Kantrowitz's INFIX package."
387 (read-from-string
388 (concatenate 'string
389 "#I("
390 (with-output-to-string (s)
391 (loop
392 (multiple-value-bind (line eof)
393 (read-line stream t)
394 (format s "~A" line)
395 (when eof (return)))))
396 ")")))
397
398(defun read-poly (vars &key
399 (stream t)
400 (ring +ring-of-integers+)
401 (order #'lex>))
402 "Reads an expression in prefix form from a stream STREAM.
403The expression read from the strem should represent a polynomial or a
404list of polynomials in variables VARS, over the ring RING. The
405polynomial or list of polynomials is returned, with terms in each
406polynomial ordered according to monomial order ORDER."
407 (poly-eval (read-infix-form :stream stream) vars ring order))
408
409(defun string->poly (str vars
410 &optional
411 (ring +ring-of-integers+)
412 (order #'lex>))
413 "Converts a string STR to a polynomial in variables VARS."
414 (with-input-from-string (s str)
415 (read-poly vars :stream s :ring ring :order order)))
416
417(defun poly->alist (p)
418 "Convert a polynomial P to an association list. Thus, the format of the
419returned value is ((MONOM[0] . COEFF[0]) (MONOM[1] . COEFF[1]) ...), where
420MONOM[I] is a list of exponents in the monomial and COEFF[I] is the
421corresponding coefficient in the ring."
422 (cond
423 ((poly-p p)
424 (mapcar #'term->cons (poly-termlist p)))
425 ((and (consp p) (eq (car p) :[))
426 (cons :[ (mapcar #'poly->alist (cdr p))))))
427
428(defun string->alist (str vars
429 &optional
430 (ring +ring-of-integers+)
431 (order #'lex>))
432 "Convert a string STR representing a polynomial or polynomial list to
433an association list (... (MONOM . COEFF) ...)."
434 (poly->alist (string->poly str vars ring order)))
435
436(defun poly-equal-no-sugar-p (p q)
437 "Compare polynomials for equality, ignoring sugar."
438 (declare (type poly p q))
439 (equalp (poly-termlist p) (poly-termlist q)))
440
441(defun poly-set-equal-no-sugar-p (p q)
442 "Compare polynomial sets P and Q for equality, ignoring sugar."
443 (null (set-exclusive-or p q :test #'poly-equal-no-sugar-p )))
444
445(defun poly-list-equal-no-sugar-p (p q)
446 "Compare polynomial lists P and Q for equality, ignoring sugar."
447 (every #'poly-equal-no-sugar-p p q))
448|#
Note: See TracBrowser for help on using the repository browser.