close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/polynomial.lisp@ 2676

Last change on this file since 2676 was 2676, checked in by Marek Rychlik, 10 years ago

* empty log message *

File size: 15.1 KB
Line 
1;;; -*- Mode: Lisp -*-
2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
22(defpackage "POLYNOMIAL"
23 (:use :cl :ring :monom :order :term #| :infix |# )
24 (:export "POLY"
25 "POLY-TERMLIST"
26 "POLY-TERM-ORDER")
27 (:documentation "Implements polynomials"))
28
29(in-package :polynomial)
30
31(proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0)))
32
33(defclass poly ()
34 ((termlist :initarg :termlist :accessor poly-termlist)
35 (order :initarg :order :accessor poly-term-order))
36 (:default-initargs :termlist nil :order #'lex>))
37
38(defmethod print-object ((self poly) stream)
39 (format stream "#<POLY TERMLIST=~A ORDER=~A>"
40 (poly-termlist self)
41 (poly-term-order self)))
42
43(defmethod r-equalp ((self poly) (other poly))
44 (and (every #'r-equalp (poly-termlist self) (poly-termlist other))
45 (eq (poly-term-order self) (poly-term-order other))))
46
47(defmethod insert-item ((self poly) (item term))
48 (push item (poly-termlist self))
49 self)
50
51(defmethod append-item ((self poly) (item term))
52 (setf (cdr (last (poly-termlist self))) (list item))
53 self)
54
55;; Leading term
56(defgeneric leading-term (object)
57 (:method ((self poly))
58 (car (poly-termlist self)))
59 (:documentation "The leading term of a polynomial, or NIL for zero polynomial."))
60
61;; Second term
62(defgeneric second-leading-term (object)
63 (:method ((self poly))
64 (cadar (poly-termlist self)))
65 (:documentation "The second leading term of a polynomial, or NIL for a polynomial with at most one term."))
66
67;; Leading coefficient
68(defgeneric leading-coefficient (object)
69 (:method ((self poly))
70 (r-coeff (leading-term self)))
71 (:documentation "The leading coefficient of a polynomial. It signals error for a zero polynomial."))
72
73;; Second coefficient
74(defgeneric second-leading-coefficient (object)
75 (:method ((self poly))
76 (r-coeff (second-leading-term self)))
77 (:documentation "The second leading coefficient of a polynomial. It signals error for a polynomial with at most one term."))
78
79;; Testing for a zero polynomial
80(defmethod r-zerop ((self poly))
81 (null (poly-termlist self)))
82
83;; The number of terms
84(defmethod r-length ((self poly))
85 (length (poly-termlist self)))
86
87(defmethod multiply-by ((self poly) (other monom))
88 (mapc #'(lambda (term) (multiply-by term other))
89 (poly-termlist self))
90 self)
91
92(defmethod multiply-by ((self poly) (other scalar))
93 (mapc #'(lambda (term) (multiply-by term other))
94 (poly-termlist self))
95 self)
96
97
98(defun fast-addition (p q order-fn add-fun)
99 (macrolet ((lc (x) `(r-coeff (car ,x))))
100 (do ((p p)
101 (q q)
102 r)
103 ((or (endp p) (endp q))
104 ;; NOTE: R contains the result in reverse order. Can it
105 ;; be more efficient to produce the terms in correct order?
106 (unless (endp q) (setf r (nreconc r q)))
107 r)
108 (multiple-value-bind
109 (greater-p equal-p)
110 (funcall order-fn (car p) (car q))
111 (cond
112 (greater-p
113 (rotatef (cdr p) r p)
114 )
115 (equal-p
116 (let ((s (funcall add-fun (lc p) (lc q))))
117 (cond
118 ((r-zerop s)
119 (setf p (cdr p))
120 )
121 (t
122 (setf (lc p) s)
123 (rotatef (cdr p) r p))))
124 (setf q (cdr q))
125 )
126 (t
127 (rotatef (cdr q) r q)))))))
128
129
130
131(defmacro def-additive-operation-method (method-name &optional (doc-string nil doc-string-supplied-p))
132 "This macro avoids code duplication for two similar operations: ADD-TO and SUBTRACT-FROM."
133 `(defmethod ,method-name ((self poly) (other poly))
134 ,@(when doc-string-supplied-p `(,doc-string))
135 (with-slots ((termlist1 termlist) (order1 order))
136 self
137 (with-slots ((termlist2 termlist) (order2 order))
138 other
139 ;; Ensure orders are compatible
140 (unless (eq order1 order2)
141 (setf termlist2 (sort termlist2 order1)
142 order2 order1))
143 (setf termlist1 (fast-addition termlist1 termlist2 order1 #',method-name))))
144 self))
145
146(def-additive-operation-method add-to
147 "Adds to polynomial SELF another polynomial OTHER.
148This operation destructively modifies both polynomials.
149The result is stored in SELF. This implementation does
150no consing, entirely reusing the sells of SELF and OTHER.")
151
152(def-additive-operation-method subtract-from
153 "Subtracts from polynomial SELF another polynomial OTHER.
154This operation destructively modifies both polynomials.
155The result is stored in SELF. This implementation does
156no consing, entirely reusing the sells of SELF and OTHER.")
157
158(defmethod unary-uminus ((self poly)))
159
160#|
161
162(defun poly-standard-extension (plist &aux (k (length plist)))
163 "Calculate [U1*P1,U2*P2,...,UK*PK], where PLIST=[P1,P2,...,PK]."
164 (declare (list plist) (fixnum k))
165 (labels ((incf-power (g i)
166 (dolist (x (poly-termlist g))
167 (incf (monom-elt (term-monom x) i)))
168 (incf (poly-sugar g))))
169 (setf plist (poly-list-add-variables plist k))
170 (dotimes (i k plist)
171 (incf-power (nth i plist) i))))
172
173(defun saturation-extension (ring f plist
174 &aux
175 (k (length plist))
176 (d (monom-dimension (poly-lm (car plist))))
177 f-x plist-x)
178 "Calculate [F, U1*P1-1,U2*P2-1,...,UK*PK-1], where PLIST=[P1,P2,...,PK]."
179 (declare (type ring ring))
180 (setf f-x (poly-list-add-variables f k)
181 plist-x (mapcar #'(lambda (x)
182 (setf (poly-termlist x)
183 (nconc (poly-termlist x)
184 (list (make-term :monom (make-monom :dimension d)
185 :coeff (funcall (ring-uminus ring)
186 (funcall (ring-unit ring)))))))
187 x)
188 (poly-standard-extension plist)))
189 (append f-x plist-x))
190
191
192(defun polysaturation-extension (ring f plist
193 &aux
194 (k (length plist))
195 (d (+ k (monom-dimension (poly-lm (car plist)))))
196 ;; Add k variables to f
197 (f (poly-list-add-variables f k))
198 ;; Set PLIST to [U1*P1,U2*P2,...,UK*PK]
199 (plist (apply #'poly-append (poly-standard-extension plist))))
200 "Calculate [F, U1*P1+U2*P2+...+UK*PK-1], where PLIST=[P1,P2,...,PK]. It destructively modifies F."
201 ;; Add -1 as the last term
202 (declare (type ring ring))
203 (setf (cdr (last (poly-termlist plist)))
204 (list (make-term :monom (make-monom :dimension d)
205 :coeff (funcall (ring-uminus ring) (funcall (ring-unit ring))))))
206 (append f (list plist)))
207
208(defun saturation-extension-1 (ring f p)
209 "Calculate [F, U*P-1]. It destructively modifies F."
210 (declare (type ring ring))
211 (polysaturation-extension ring f (list p)))
212
213;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
214;;
215;; Evaluation of polynomial (prefix) expressions
216;;
217;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
218
219(defun coerce-coeff (ring expr vars)
220 "Coerce an element of the coefficient ring to a constant polynomial."
221 ;; Modular arithmetic handler by rat
222 (declare (type ring ring))
223 (make-poly-from-termlist (list (make-term :monom (make-monom :dimension (length vars))
224 :coeff (funcall (ring-parse ring) expr)))
225 0))
226
227(defun poly-eval (expr vars
228 &optional
229 (ring +ring-of-integers+)
230 (order #'lex>)
231 (list-marker :[)
232 &aux
233 (ring-and-order (make-ring-and-order :ring ring :order order)))
234 "Evaluate Lisp form EXPR to a polynomial or a list of polynomials in
235variables VARS. Return the resulting polynomial or list of
236polynomials. Standard arithmetical operators in form EXPR are
237replaced with their analogues in the ring of polynomials, and the
238resulting expression is evaluated, resulting in a polynomial or a list
239of polynomials in internal form. A similar operation in another computer
240algebra system could be called 'expand' or so."
241 (declare (type ring ring))
242 (labels ((p-eval (arg) (poly-eval arg vars ring order))
243 (p-eval-scalar (arg) (poly-eval-scalar arg))
244 (p-eval-list (args) (mapcar #'p-eval args))
245 (p-add (x y) (poly-add ring-and-order x y)))
246 (cond
247 ((null expr) (error "Empty expression"))
248 ((eql expr 0) (make-poly-zero))
249 ((member expr vars :test #'equalp)
250 (let ((pos (position expr vars :test #'equalp)))
251 (make-poly-variable ring (length vars) pos)))
252 ((atom expr)
253 (coerce-coeff ring expr vars))
254 ((eq (car expr) list-marker)
255 (cons list-marker (p-eval-list (cdr expr))))
256 (t
257 (case (car expr)
258 (+ (reduce #'p-add (p-eval-list (cdr expr))))
259 (- (case (length expr)
260 (1 (make-poly-zero))
261 (2 (poly-uminus ring (p-eval (cadr expr))))
262 (3 (poly-sub ring-and-order (p-eval (cadr expr)) (p-eval (caddr expr))))
263 (otherwise (poly-sub ring-and-order (p-eval (cadr expr))
264 (reduce #'p-add (p-eval-list (cddr expr)))))))
265 (*
266 (if (endp (cddr expr)) ;unary
267 (p-eval (cdr expr))
268 (reduce #'(lambda (p q) (poly-mul ring-and-order p q)) (p-eval-list (cdr expr)))))
269 (/
270 ;; A polynomial can be divided by a scalar
271 (cond
272 ((endp (cddr expr))
273 ;; A special case (/ ?), the inverse
274 (coerce-coeff ring (apply (ring-div ring) (cdr expr)) vars))
275 (t
276 (let ((num (p-eval (cadr expr)))
277 (denom-inverse (apply (ring-div ring)
278 (cons (funcall (ring-unit ring))
279 (mapcar #'p-eval-scalar (cddr expr))))))
280 (scalar-times-poly ring denom-inverse num)))))
281 (expt
282 (cond
283 ((member (cadr expr) vars :test #'equalp)
284 ;;Special handling of (expt var pow)
285 (let ((pos (position (cadr expr) vars :test #'equalp)))
286 (make-poly-variable ring (length vars) pos (caddr expr))))
287 ((not (and (integerp (caddr expr)) (plusp (caddr expr))))
288 ;; Negative power means division in coefficient ring
289 ;; Non-integer power means non-polynomial coefficient
290 (coerce-coeff ring expr vars))
291 (t (poly-expt ring-and-order (p-eval (cadr expr)) (caddr expr)))))
292 (otherwise
293 (coerce-coeff ring expr vars)))))))
294
295(defun poly-eval-scalar (expr
296 &optional
297 (ring +ring-of-integers+)
298 &aux
299 (order #'lex>))
300 "Evaluate a scalar expression EXPR in ring RING."
301 (declare (type ring ring))
302 (poly-lc (poly-eval expr nil ring order)))
303
304(defun spoly (ring-and-order f g
305 &aux
306 (ring (ro-ring ring-and-order)))
307 "It yields the S-polynomial of polynomials F and G."
308 (declare (type ring-and-order ring-and-order) (type poly f g))
309 (let* ((lcm (monom-lcm (poly-lm f) (poly-lm g)))
310 (mf (monom-div lcm (poly-lm f)))
311 (mg (monom-div lcm (poly-lm g))))
312 (declare (type monom mf mg))
313 (multiple-value-bind (c cf cg)
314 (funcall (ring-ezgcd ring) (poly-lc f) (poly-lc g))
315 (declare (ignore c))
316 (poly-sub
317 ring-and-order
318 (scalar-times-poly ring cg (monom-times-poly mf f))
319 (scalar-times-poly ring cf (monom-times-poly mg g))))))
320
321
322(defun poly-primitive-part (ring p)
323 "Divide polynomial P with integer coefficients by gcd of its
324coefficients and return the result."
325 (declare (type ring ring) (type poly p))
326 (if (poly-zerop p)
327 (values p 1)
328 (let ((c (poly-content ring p)))
329 (values (make-poly-from-termlist
330 (mapcar
331 #'(lambda (x)
332 (make-term :monom (term-monom x)
333 :coeff (funcall (ring-div ring) (term-coeff x) c)))
334 (poly-termlist p))
335 (poly-sugar p))
336 c))))
337
338(defun poly-content (ring p)
339 "Greatest common divisor of the coefficients of the polynomial P. Use the RING structure
340to compute the greatest common divisor."
341 (declare (type ring ring) (type poly p))
342 (reduce (ring-gcd ring) (mapcar #'term-coeff (rest (poly-termlist p))) :initial-value (poly-lc p)))
343
344(defun read-infix-form (&key (stream t))
345 "Parser of infix expressions with integer/rational coefficients
346The parser will recognize two kinds of polynomial expressions:
347
348- polynomials in fully expanded forms with coefficients
349 written in front of symbolic expressions; constants can be optionally
350 enclosed in (); for example, the infix form
351 X^2-Y^2+(-4/3)*U^2*W^3-5
352 parses to
353 (+ (- (EXPT X 2) (EXPT Y 2)) (* (- (/ 4 3)) (EXPT U 2) (EXPT W 3)) (- 5))
354
355- lists of polynomials; for example
356 [X-Y, X^2+3*Z]
357 parses to
358 (:[ (- X Y) (+ (EXPT X 2) (* 3 Z)))
359 where the first symbol [ marks a list of polynomials.
360
361-other infix expressions, for example
362 [(X-Y)*(X+Y)/Z,(X+1)^2]
363parses to:
364 (:[ (/ (* (- X Y) (+ X Y)) Z) (EXPT (+ X 1) 2))
365Currently this function is implemented using M. Kantrowitz's INFIX package."
366 (read-from-string
367 (concatenate 'string
368 "#I("
369 (with-output-to-string (s)
370 (loop
371 (multiple-value-bind (line eof)
372 (read-line stream t)
373 (format s "~A" line)
374 (when eof (return)))))
375 ")")))
376
377(defun read-poly (vars &key
378 (stream t)
379 (ring +ring-of-integers+)
380 (order #'lex>))
381 "Reads an expression in prefix form from a stream STREAM.
382The expression read from the strem should represent a polynomial or a
383list of polynomials in variables VARS, over the ring RING. The
384polynomial or list of polynomials is returned, with terms in each
385polynomial ordered according to monomial order ORDER."
386 (poly-eval (read-infix-form :stream stream) vars ring order))
387
388(defun string->poly (str vars
389 &optional
390 (ring +ring-of-integers+)
391 (order #'lex>))
392 "Converts a string STR to a polynomial in variables VARS."
393 (with-input-from-string (s str)
394 (read-poly vars :stream s :ring ring :order order)))
395
396(defun poly->alist (p)
397 "Convert a polynomial P to an association list. Thus, the format of the
398returned value is ((MONOM[0] . COEFF[0]) (MONOM[1] . COEFF[1]) ...), where
399MONOM[I] is a list of exponents in the monomial and COEFF[I] is the
400corresponding coefficient in the ring."
401 (cond
402 ((poly-p p)
403 (mapcar #'term->cons (poly-termlist p)))
404 ((and (consp p) (eq (car p) :[))
405 (cons :[ (mapcar #'poly->alist (cdr p))))))
406
407(defun string->alist (str vars
408 &optional
409 (ring +ring-of-integers+)
410 (order #'lex>))
411 "Convert a string STR representing a polynomial or polynomial list to
412an association list (... (MONOM . COEFF) ...)."
413 (poly->alist (string->poly str vars ring order)))
414
415(defun poly-equal-no-sugar-p (p q)
416 "Compare polynomials for equality, ignoring sugar."
417 (declare (type poly p q))
418 (equalp (poly-termlist p) (poly-termlist q)))
419
420(defun poly-set-equal-no-sugar-p (p q)
421 "Compare polynomial sets P and Q for equality, ignoring sugar."
422 (null (set-exclusive-or p q :test #'poly-equal-no-sugar-p )))
423
424(defun poly-list-equal-no-sugar-p (p q)
425 "Compare polynomial lists P and Q for equality, ignoring sugar."
426 (every #'poly-equal-no-sugar-p p q))
427|#
Note: See TracBrowser for help on using the repository browser.