close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/polynomial.lisp@ 2665

Last change on this file since 2665 was 2663, checked in by Marek Rychlik, 10 years ago

* empty log message *

File size: 15.0 KB
Line 
1;;; -*- Mode: Lisp -*-
2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
22(defpackage "POLYNOMIAL"
23 (:use :cl :ring :monom :order :term #| :infix |# )
24 (:export "POLY"
25 "POLY-TERMLIST"
26 "POLY-TERM-ORDER")
27 (:documentation "Implements polynomials"))
28
29(in-package :polynomial)
30
31(proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0)))
32
33(defclass poly ()
34 ((termlist :initarg :termlist :accessor poly-termlist)
35 (order :initarg :order :accessor poly-term-order))
36 (:default-initargs :termlist nil :order #'lex>))
37
38(defmethod print-object ((self poly) stream)
39 (format stream "#<POLY TERMLIST=~A ORDER=~A>"
40 (poly-termlist self)
41 (poly-term-order self)))
42
43(defmethod r-equalp ((self poly) (other poly))
44 (and (every #'r-equalp (poly-termlist self) (poly-termlist other))
45 (eq (poly-term-order self) (poly-term-order other))))
46
47(defmethod insert-item ((self poly) (item term))
48 (push item (poly-termlist self))
49 self)
50
51(defmethod append-item ((self poly) (item term))
52 (setf (cdr (last (poly-termlist self))) (list item))
53 self)
54
55;; Leading term
56(defgeneric leading-term (object)
57 (:method ((self poly))
58 (car (poly-termlist self)))
59 (:documentation "The leading term of a polynomial, or NIL for zero polynomial."))
60
61;; Second term
62(defgeneric second-leading-term (object)
63 (:method ((self poly))
64 (cadar (poly-termlist self)))
65 (:documentation "The second leading term of a polynomial, or NIL for a polynomial with at most one term."))
66
67;; Leading coefficient
68(defgeneric leading-coefficient (object)
69 (:method ((self poly))
70 (r-coeff (leading-term self)))
71 (:documentation "The leading coefficient of a polynomial. It signals error for a zero polynomial."))
72
73;; Second coefficient
74(defgeneric second-leading-coefficient (object)
75 (:method ((self poly))
76 (r-coeff (second-leading-term self)))
77 (:documentation "The second leading coefficient of a polynomial. It signals error for a polynomial with at most one term."))
78
79;; Testing for a zero polynomial
80(defmethod r-zerop ((self poly))
81 (null (poly-termlist self)))
82
83;; The number of terms
84(defmethod r-length ((self poly))
85 (length (poly-termlist self)))
86
87(defmethod multiply-by ((self poly) (other monom))
88 (mapc #'(lambda (term) (multiply-by term other))
89 (poly-termlist self))
90 self)
91
92(defmethod multiply-by ((self poly) (other scalar))
93 (mapc #'(lambda (term) (multiply-by term other))
94 (poly-termlist self))
95 self)
96
97
98(defun fast-addition (p q order-fn add-fun)
99 (macrolet ((lc (x) `(r-coeff (car ,x))))
100 (do ((p p)
101 (q q)
102 r)
103 ((or (endp p) (endp q))
104 (unless (endp q) (setf r (nreconc r q)))
105 r)
106 (multiple-value-bind
107 (greater-p equal-p)
108 (funcall order-fn (car p) (car q))
109 (cond
110 (greater-p
111 (rotatef (cdr p) r p)
112 )
113 (equal-p
114 (let ((s (funcall add-fun (lc p) (lc q))))
115 (print s)
116 (cond
117 ((r-zerop s)
118 (setf p (cdr p))
119 )
120 (t
121 (setf (lc p) s)
122 (rotatef (cdr p) r p))))
123 (setf q (cdr q))
124 )
125 (t
126 (rotatef (cdr q) r q)))))))
127
128
129
130(defmacro def-additive-operation-method (method-name &optional (doc-string nil doc-string-supplied-p))
131 "This macro avoids code duplication for two similar operations: ADD-TO and SUBTRACT-FROM."
132 `(defmethod ,method-name ((self poly) (other poly))
133 ,@(when doc-string-supplied-p `(,doc-string))
134 (with-slots ((termlist1 termlist) (order1 order))
135 self
136 (with-slots ((termlist2 termlist) (order2 order))
137 other
138 ;; Ensure orders are compatible
139 (unless (eq order1 order2)
140 (setf termlist2 (sort termlist2 order1)
141 order2 order1))
142 (setf termlist1 (fast-addition termlist1 termlist2 order1 #',method-name))))
143 self))
144
145(def-additive-operation-method add-to
146 "Adds to polynomial SELF another polynomial OTHER.
147This operation destructively modifies both polynomials.
148The result is stored in SELF. This implementation does
149no consing, entirely reusing the sells of SELF and OTHER.")
150
151(def-additive-operation-method subtract-from
152 "Subtracts from polynomial SELF another polynomial OTHER.
153This operation destructively modifies both polynomials.
154The result is stored in SELF. This implementation does
155no consing, entirely reusing the sells of SELF and OTHER.")
156
157(defmethod unary-uminus ((self poly)))
158
159#|
160
161(defun poly-standard-extension (plist &aux (k (length plist)))
162 "Calculate [U1*P1,U2*P2,...,UK*PK], where PLIST=[P1,P2,...,PK]."
163 (declare (list plist) (fixnum k))
164 (labels ((incf-power (g i)
165 (dolist (x (poly-termlist g))
166 (incf (monom-elt (term-monom x) i)))
167 (incf (poly-sugar g))))
168 (setf plist (poly-list-add-variables plist k))
169 (dotimes (i k plist)
170 (incf-power (nth i plist) i))))
171
172(defun saturation-extension (ring f plist
173 &aux
174 (k (length plist))
175 (d (monom-dimension (poly-lm (car plist))))
176 f-x plist-x)
177 "Calculate [F, U1*P1-1,U2*P2-1,...,UK*PK-1], where PLIST=[P1,P2,...,PK]."
178 (declare (type ring ring))
179 (setf f-x (poly-list-add-variables f k)
180 plist-x (mapcar #'(lambda (x)
181 (setf (poly-termlist x)
182 (nconc (poly-termlist x)
183 (list (make-term :monom (make-monom :dimension d)
184 :coeff (funcall (ring-uminus ring)
185 (funcall (ring-unit ring)))))))
186 x)
187 (poly-standard-extension plist)))
188 (append f-x plist-x))
189
190
191(defun polysaturation-extension (ring f plist
192 &aux
193 (k (length plist))
194 (d (+ k (monom-dimension (poly-lm (car plist)))))
195 ;; Add k variables to f
196 (f (poly-list-add-variables f k))
197 ;; Set PLIST to [U1*P1,U2*P2,...,UK*PK]
198 (plist (apply #'poly-append (poly-standard-extension plist))))
199 "Calculate [F, U1*P1+U2*P2+...+UK*PK-1], where PLIST=[P1,P2,...,PK]. It destructively modifies F."
200 ;; Add -1 as the last term
201 (declare (type ring ring))
202 (setf (cdr (last (poly-termlist plist)))
203 (list (make-term :monom (make-monom :dimension d)
204 :coeff (funcall (ring-uminus ring) (funcall (ring-unit ring))))))
205 (append f (list plist)))
206
207(defun saturation-extension-1 (ring f p)
208 "Calculate [F, U*P-1]. It destructively modifies F."
209 (declare (type ring ring))
210 (polysaturation-extension ring f (list p)))
211
212;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
213;;
214;; Evaluation of polynomial (prefix) expressions
215;;
216;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
217
218(defun coerce-coeff (ring expr vars)
219 "Coerce an element of the coefficient ring to a constant polynomial."
220 ;; Modular arithmetic handler by rat
221 (declare (type ring ring))
222 (make-poly-from-termlist (list (make-term :monom (make-monom :dimension (length vars))
223 :coeff (funcall (ring-parse ring) expr)))
224 0))
225
226(defun poly-eval (expr vars
227 &optional
228 (ring +ring-of-integers+)
229 (order #'lex>)
230 (list-marker :[)
231 &aux
232 (ring-and-order (make-ring-and-order :ring ring :order order)))
233 "Evaluate Lisp form EXPR to a polynomial or a list of polynomials in
234variables VARS. Return the resulting polynomial or list of
235polynomials. Standard arithmetical operators in form EXPR are
236replaced with their analogues in the ring of polynomials, and the
237resulting expression is evaluated, resulting in a polynomial or a list
238of polynomials in internal form. A similar operation in another computer
239algebra system could be called 'expand' or so."
240 (declare (type ring ring))
241 (labels ((p-eval (arg) (poly-eval arg vars ring order))
242 (p-eval-scalar (arg) (poly-eval-scalar arg))
243 (p-eval-list (args) (mapcar #'p-eval args))
244 (p-add (x y) (poly-add ring-and-order x y)))
245 (cond
246 ((null expr) (error "Empty expression"))
247 ((eql expr 0) (make-poly-zero))
248 ((member expr vars :test #'equalp)
249 (let ((pos (position expr vars :test #'equalp)))
250 (make-poly-variable ring (length vars) pos)))
251 ((atom expr)
252 (coerce-coeff ring expr vars))
253 ((eq (car expr) list-marker)
254 (cons list-marker (p-eval-list (cdr expr))))
255 (t
256 (case (car expr)
257 (+ (reduce #'p-add (p-eval-list (cdr expr))))
258 (- (case (length expr)
259 (1 (make-poly-zero))
260 (2 (poly-uminus ring (p-eval (cadr expr))))
261 (3 (poly-sub ring-and-order (p-eval (cadr expr)) (p-eval (caddr expr))))
262 (otherwise (poly-sub ring-and-order (p-eval (cadr expr))
263 (reduce #'p-add (p-eval-list (cddr expr)))))))
264 (*
265 (if (endp (cddr expr)) ;unary
266 (p-eval (cdr expr))
267 (reduce #'(lambda (p q) (poly-mul ring-and-order p q)) (p-eval-list (cdr expr)))))
268 (/
269 ;; A polynomial can be divided by a scalar
270 (cond
271 ((endp (cddr expr))
272 ;; A special case (/ ?), the inverse
273 (coerce-coeff ring (apply (ring-div ring) (cdr expr)) vars))
274 (t
275 (let ((num (p-eval (cadr expr)))
276 (denom-inverse (apply (ring-div ring)
277 (cons (funcall (ring-unit ring))
278 (mapcar #'p-eval-scalar (cddr expr))))))
279 (scalar-times-poly ring denom-inverse num)))))
280 (expt
281 (cond
282 ((member (cadr expr) vars :test #'equalp)
283 ;;Special handling of (expt var pow)
284 (let ((pos (position (cadr expr) vars :test #'equalp)))
285 (make-poly-variable ring (length vars) pos (caddr expr))))
286 ((not (and (integerp (caddr expr)) (plusp (caddr expr))))
287 ;; Negative power means division in coefficient ring
288 ;; Non-integer power means non-polynomial coefficient
289 (coerce-coeff ring expr vars))
290 (t (poly-expt ring-and-order (p-eval (cadr expr)) (caddr expr)))))
291 (otherwise
292 (coerce-coeff ring expr vars)))))))
293
294(defun poly-eval-scalar (expr
295 &optional
296 (ring +ring-of-integers+)
297 &aux
298 (order #'lex>))
299 "Evaluate a scalar expression EXPR in ring RING."
300 (declare (type ring ring))
301 (poly-lc (poly-eval expr nil ring order)))
302
303(defun spoly (ring-and-order f g
304 &aux
305 (ring (ro-ring ring-and-order)))
306 "It yields the S-polynomial of polynomials F and G."
307 (declare (type ring-and-order ring-and-order) (type poly f g))
308 (let* ((lcm (monom-lcm (poly-lm f) (poly-lm g)))
309 (mf (monom-div lcm (poly-lm f)))
310 (mg (monom-div lcm (poly-lm g))))
311 (declare (type monom mf mg))
312 (multiple-value-bind (c cf cg)
313 (funcall (ring-ezgcd ring) (poly-lc f) (poly-lc g))
314 (declare (ignore c))
315 (poly-sub
316 ring-and-order
317 (scalar-times-poly ring cg (monom-times-poly mf f))
318 (scalar-times-poly ring cf (monom-times-poly mg g))))))
319
320
321(defun poly-primitive-part (ring p)
322 "Divide polynomial P with integer coefficients by gcd of its
323coefficients and return the result."
324 (declare (type ring ring) (type poly p))
325 (if (poly-zerop p)
326 (values p 1)
327 (let ((c (poly-content ring p)))
328 (values (make-poly-from-termlist
329 (mapcar
330 #'(lambda (x)
331 (make-term :monom (term-monom x)
332 :coeff (funcall (ring-div ring) (term-coeff x) c)))
333 (poly-termlist p))
334 (poly-sugar p))
335 c))))
336
337(defun poly-content (ring p)
338 "Greatest common divisor of the coefficients of the polynomial P. Use the RING structure
339to compute the greatest common divisor."
340 (declare (type ring ring) (type poly p))
341 (reduce (ring-gcd ring) (mapcar #'term-coeff (rest (poly-termlist p))) :initial-value (poly-lc p)))
342
343(defun read-infix-form (&key (stream t))
344 "Parser of infix expressions with integer/rational coefficients
345The parser will recognize two kinds of polynomial expressions:
346
347- polynomials in fully expanded forms with coefficients
348 written in front of symbolic expressions; constants can be optionally
349 enclosed in (); for example, the infix form
350 X^2-Y^2+(-4/3)*U^2*W^3-5
351 parses to
352 (+ (- (EXPT X 2) (EXPT Y 2)) (* (- (/ 4 3)) (EXPT U 2) (EXPT W 3)) (- 5))
353
354- lists of polynomials; for example
355 [X-Y, X^2+3*Z]
356 parses to
357 (:[ (- X Y) (+ (EXPT X 2) (* 3 Z)))
358 where the first symbol [ marks a list of polynomials.
359
360-other infix expressions, for example
361 [(X-Y)*(X+Y)/Z,(X+1)^2]
362parses to:
363 (:[ (/ (* (- X Y) (+ X Y)) Z) (EXPT (+ X 1) 2))
364Currently this function is implemented using M. Kantrowitz's INFIX package."
365 (read-from-string
366 (concatenate 'string
367 "#I("
368 (with-output-to-string (s)
369 (loop
370 (multiple-value-bind (line eof)
371 (read-line stream t)
372 (format s "~A" line)
373 (when eof (return)))))
374 ")")))
375
376(defun read-poly (vars &key
377 (stream t)
378 (ring +ring-of-integers+)
379 (order #'lex>))
380 "Reads an expression in prefix form from a stream STREAM.
381The expression read from the strem should represent a polynomial or a
382list of polynomials in variables VARS, over the ring RING. The
383polynomial or list of polynomials is returned, with terms in each
384polynomial ordered according to monomial order ORDER."
385 (poly-eval (read-infix-form :stream stream) vars ring order))
386
387(defun string->poly (str vars
388 &optional
389 (ring +ring-of-integers+)
390 (order #'lex>))
391 "Converts a string STR to a polynomial in variables VARS."
392 (with-input-from-string (s str)
393 (read-poly vars :stream s :ring ring :order order)))
394
395(defun poly->alist (p)
396 "Convert a polynomial P to an association list. Thus, the format of the
397returned value is ((MONOM[0] . COEFF[0]) (MONOM[1] . COEFF[1]) ...), where
398MONOM[I] is a list of exponents in the monomial and COEFF[I] is the
399corresponding coefficient in the ring."
400 (cond
401 ((poly-p p)
402 (mapcar #'term->cons (poly-termlist p)))
403 ((and (consp p) (eq (car p) :[))
404 (cons :[ (mapcar #'poly->alist (cdr p))))))
405
406(defun string->alist (str vars
407 &optional
408 (ring +ring-of-integers+)
409 (order #'lex>))
410 "Convert a string STR representing a polynomial or polynomial list to
411an association list (... (MONOM . COEFF) ...)."
412 (poly->alist (string->poly str vars ring order)))
413
414(defun poly-equal-no-sugar-p (p q)
415 "Compare polynomials for equality, ignoring sugar."
416 (declare (type poly p q))
417 (equalp (poly-termlist p) (poly-termlist q)))
418
419(defun poly-set-equal-no-sugar-p (p q)
420 "Compare polynomial sets P and Q for equality, ignoring sugar."
421 (null (set-exclusive-or p q :test #'poly-equal-no-sugar-p )))
422
423(defun poly-list-equal-no-sugar-p (p q)
424 "Compare polynomial lists P and Q for equality, ignoring sugar."
425 (every #'poly-equal-no-sugar-p p q))
426|#
Note: See TracBrowser for help on using the repository browser.