close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/polynomial.lisp@ 1854

Last change on this file since 1854 was 1847, checked in by Marek Rychlik, 10 years ago

* empty log message *

File size: 16.6 KB
Line 
1;;; -*- Mode: Lisp -*-
2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
22
23(defpackage "POLYNOMIAL"
24 (:use :cl :ring :ring-and-order :monom :order :term :termlist :infix)
25 (:export "POLY"
26 "POLY-TERMLIST"
27 "POLY-SUGAR"
28 "POLY-RESET-SUGAR"
29 "POLY-LT"
30 "MAKE-POLY-FROM-TERMLIST"
31 "MAKE-POLY-ZERO"
32 "MAKE-POLY-VARIABLE"
33 "POLY-UNIT"
34 "POLY-LM"
35 "POLY-SECOND-LM"
36 "POLY-SECOND-LT"
37 "POLY-LC"
38 "POLY-SECOND-LC"
39 "POLY-ZEROP"
40 "POLY-LENGTH"
41 "SCALAR-TIMES-POLY"
42 "SCALAR-TIMES-POLY-1"
43 "MONOM-TIMES-POLY"
44 "TERM-TIMES-POLY"
45 "POLY-ADD"
46 "POLY-SUB"
47 "POLY-UMINUS"
48 "POLY-MUL"
49 "POLY-EXPT"
50 "POLY-APPEND"
51 "POLY-NREVERSE"
52 "POLY-REVERSE"
53 "POLY-CONTRACT"
54 "POLY-EXTEND"
55 "POLY-ADD-VARIABLES"
56 "POLY-LIST-ADD-VARIABLES"
57 "POLY-STANDARD-EXTENSION"
58 "SATURATION-EXTENSION"
59 "POLYSATURATION-EXTENSION"
60 "SATURATION-EXTENSION-1"
61 "COERCE-COEFF"
62 "POLY-EVAL"
63 "POLY-EVAL-SCALAR"
64 "SPOLY"
65 "POLY-PRIMITIVE-PART"
66 "POLY-CONTENT"
67 "READ-INFIX-FORM"
68 "READ-POLY"
69 "STRING->POLY"
70 "POLY->ALIST"
71 "STRING->ALIST"
72 "POLY-EQUAL-NO-SUGAR-P"
73 "POLY-SET-EQUAL-NO-SUGAR-P"
74 "POLY-LIST-EQUAL-NO-SUGAR-P"
75 ))
76
77(in-package :polynomial)
78
79;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
80;;
81;; Polynomials
82;;
83;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
84
85(defstruct (poly
86 ;;
87 ;; BOA constructor, by default constructs zero polynomial
88 (:constructor make-poly-from-termlist (termlist &optional (sugar (termlist-sugar termlist))))
89 (:constructor make-poly-zero (&aux (termlist nil) (sugar -1)))
90 ;; Constructor of polynomials representing a variable
91 (:constructor make-poly-variable (ring nvars pos &optional (power 1)
92 &aux
93 (termlist (list
94 (make-term-variable ring nvars pos power)))
95 (sugar power)))
96 (:constructor poly-unit (ring dimension
97 &aux
98 (termlist (termlist-unit ring dimension))
99 (sugar 0))))
100 (termlist nil :type list)
101 (sugar -1 :type fixnum))
102
103;; Leading term
104(defmacro poly-lt (p) `(car (poly-termlist ,p)))
105
106;; Second term
107(defmacro poly-second-lt (p) `(cadar (poly-termlist ,p)))
108
109;; Leading monomial
110(defun poly-lm (p) (term-monom (poly-lt p)))
111
112;; Second monomial
113(defun poly-second-lm (p) (term-monom (poly-second-lt p)))
114
115;; Leading coefficient
116(defun poly-lc (p) (term-coeff (poly-lt p)))
117
118;; Second coefficient
119(defun poly-second-lc (p) (term-coeff (poly-second-lt p)))
120
121;; Testing for a zero polynomial
122(defun poly-zerop (p) (null (poly-termlist p)))
123
124;; The number of terms
125(defun poly-length (p) (length (poly-termlist p)))
126
127(defun poly-reset-sugar (p)
128 "(Re)sets the sugar of a polynomial P to the sugar of (POLY-TERMLIST P).
129Thus, the sugar is set to the maximum sugar of all monomials of P, or -1
130if P is a zero polynomial."
131 (declare (type poly p))
132 (setf (poly-sugar p) (termlist-sugar (poly-termlist p)))
133 p)
134
135(defun scalar-times-poly (ring c p)
136 "The scalar product of scalar C by a polynomial P. The sugar of the
137original polynomial becomes the sugar of the result."
138 (declare (type ring ring) (type poly p))
139 (make-poly-from-termlist (scalar-times-termlist ring c (poly-termlist p)) (poly-sugar p)))
140
141(defun scalar-times-poly-1 (ring c p)
142 "The scalar product of scalar C by a polynomial P, omitting the head term. The sugar of the
143original polynomial becomes the sugar of the result."
144 (declare (type ring ring) (type poly p))
145 (make-poly-from-termlist (scalar-times-termlist ring c (cdr (poly-termlist p))) (poly-sugar p)))
146
147(defun monom-times-poly (m p)
148 (declare (type poly p))
149 (make-poly-from-termlist
150 (monom-times-termlist m (poly-termlist p))
151 (+ (poly-sugar p) (monom-sugar m))))
152
153(defun term-times-poly (ring term p)
154 (declare (type ring ring) (type term term) (type poly p))
155 (make-poly-from-termlist
156 (term-times-termlist ring term (poly-termlist p))
157 (+ (poly-sugar p) (term-sugar term))))
158
159(defun poly-add (ring-and-order p q)
160 (declare (type ring-and-order ring-and-order) (type poly p q))
161 (make-poly-from-termlist
162 (termlist-add ring-and-order
163 (poly-termlist p)
164 (poly-termlist q))
165 (max (poly-sugar p) (poly-sugar q))))
166
167(defun poly-sub (ring-and-order p q)
168 (declare (type ring-and-order ring-and-order) (type poly p q))
169 (make-poly-from-termlist
170 (termlist-sub ring-and-order (poly-termlist p) (poly-termlist q))
171 (max (poly-sugar p) (poly-sugar q))))
172
173(defun poly-uminus (ring p)
174 (declare (type ring ring) (type poly p))
175 (make-poly-from-termlist
176 (termlist-uminus ring (poly-termlist p))
177 (poly-sugar p)))
178
179(defun poly-mul (ring-and-order p q)
180 (declare (type ring-and-order ring-and-order) (type poly p q))
181 (make-poly-from-termlist
182 (termlist-mul ring-and-order (poly-termlist p) (poly-termlist q))
183 (+ (poly-sugar p) (poly-sugar q))))
184
185(defun poly-expt (ring-and-order p n)
186 (declare (type ring-and-order ring-and-order) (type poly p))
187 (make-poly-from-termlist (termlist-expt ring-and-order (poly-termlist p) n) (* n (poly-sugar p))))
188
189(defun poly-append (&rest plist)
190 (make-poly-from-termlist (apply #'append (mapcar #'poly-termlist plist))
191 (apply #'max (mapcar #'poly-sugar plist))))
192
193(defun poly-nreverse (p)
194 "Destructively reverse the order of terms in polynomial P. Returns P"
195 (declare (type poly p))
196 (setf (poly-termlist p) (nreverse (poly-termlist p)))
197 p)
198
199(defun poly-reverse (p)
200 "Returns a copy of the polynomial P with terms in reverse order."
201 (declare (type poly p))
202 (make-poly-from-termlist (reverse (poly-termlist p))
203 (poly-sugar p)))
204
205
206(defun poly-contract (p &optional (k 1))
207 (declare (type poly p))
208 (make-poly-from-termlist (termlist-contract (poly-termlist p) k)
209 (poly-sugar p)))
210
211(defun poly-extend (p &optional (m (make-monom :dimension 1)))
212 (declare (type poly p))
213 (make-poly-from-termlist
214 (termlist-extend (poly-termlist p) m)
215 (+ (poly-sugar p) (monom-sugar m))))
216
217(defun poly-add-variables (p k)
218 (declare (type poly p))
219 (setf (poly-termlist p) (termlist-add-variables (poly-termlist p) k))
220 p)
221
222(defun poly-list-add-variables (plist k)
223 (mapcar #'(lambda (p) (poly-add-variables p k)) plist))
224
225(defun poly-standard-extension (plist &aux (k (length plist)))
226 "Calculate [U1*P1,U2*P2,...,UK*PK], where PLIST=[P1,P2,...,PK]."
227 (declare (list plist) (fixnum k))
228 (labels ((incf-power (g i)
229 (dolist (x (poly-termlist g))
230 (incf (monom-elt (term-monom x) i)))
231 (incf (poly-sugar g))))
232 (setf plist (poly-list-add-variables plist k))
233 (dotimes (i k plist)
234 (incf-power (nth i plist) i))))
235
236(defun saturation-extension (ring f plist
237 &aux
238 (k (length plist))
239 (d (monom-dimension (poly-lm (car plist))))
240 f-x plist-x)
241 "Calculate [F, U1*P1-1,U2*P2-1,...,UK*PK-1], where PLIST=[P1,P2,...,PK]."
242 (setf f-x (poly-list-add-variables f k)
243 plist-x (mapcar #'(lambda (x)
244 (setf (poly-termlist x)
245 (nconc (poly-termlist x)
246 (list (make-term :monom (make-monom :dimension d)
247 :coeff (funcall (ring-uminus ring)
248 (funcall (ring-unit ring)))))))
249 x)
250 (poly-standard-extension plist)))
251 (append f-x plist-x))
252
253
254(defun polysaturation-extension (ring f plist
255 &aux
256 (k (length plist))
257 (d (+ k (monom-dimension (poly-lm (car plist)))))
258 ;; Add k variables to f
259 (f (poly-list-add-variables f k))
260 ;; Set PLIST to [U1*P1,U2*P2,...,UK*PK]
261 (plist (apply #'poly-append (poly-standard-extension plist))))
262 "Calculate [F, U1*P1+U2*P2+...+UK*PK-1], where PLIST=[P1,P2,...,PK]. It destructively modifies F."
263 ;; Add -1 as the last term
264 (setf (cdr (last (poly-termlist plist)))
265 (list (make-term :monom (make-monom :dimension d)
266 :coeff (funcall (ring-uminus ring) (funcall (ring-unit ring))))))
267 (append f (list plist)))
268
269(defun saturation-extension-1 (ring f p)
270 "Calculate [F, U*P-1]. It destructively modifies F."
271 (polysaturation-extension ring f (list p)))
272
273;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
274;;
275;; Evaluation of polynomial (prefix) expressions
276;;
277;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
278
279(defun coerce-coeff (ring expr vars)
280 "Coerce an element of the coefficient ring to a constant polynomial."
281 ;; Modular arithmetic handler by rat
282 (make-poly-from-termlist (list (make-term :monom (make-monom :dimension (length vars))
283 :coeff (funcall (ring-parse ring) expr)))
284 0))
285
286(defun poly-eval (expr vars
287 &optional
288 (ring +ring-of-integers+)
289 (order #'lex>)
290 (list-marker :[)
291 &aux
292 (ring-and-order (make-ring-and-order :ring ring :order order)))
293 "Evaluate Lisp form EXPR to a polynomial or a list of polynomials in
294variables VARS. Return the resulting polynomial or list of
295polynomials. Standard arithmetical operators in form EXPR are
296replaced with their analogues in the ring of polynomials, and the
297resulting expression is evaluated, resulting in a polynomial or a list
298of polynomials in internal form. A similar operation in another computer
299algebra system could be called 'expand' or so."
300 (labels ((p-eval (arg) (poly-eval arg vars ring order))
301 (p-eval-scalar (arg) (poly-eval-scalar arg))
302 (p-eval-list (args) (mapcar #'p-eval args))
303 (p-add (x y) (poly-add ring-and-order x y)))
304 (cond
305 ((null expr) (error "Empty expression"))
306 ((eql expr 0) (make-poly-zero))
307 ((member expr vars :test #'equalp)
308 (let ((pos (position expr vars :test #'equalp)))
309 (make-poly-variable ring (length vars) pos)))
310 ((atom expr)
311 (coerce-coeff ring expr vars))
312 ((eq (car expr) list-marker)
313 (cons list-marker (p-eval-list (cdr expr))))
314 (t
315 (case (car expr)
316 (+ (reduce #'p-add (p-eval-list (cdr expr))))
317 (- (case (length expr)
318 (1 (make-poly-zero))
319 (2 (poly-uminus ring (p-eval (cadr expr))))
320 (3 (poly-sub ring-and-order (p-eval (cadr expr)) (p-eval (caddr expr))))
321 (otherwise (poly-sub ring-and-order (p-eval (cadr expr))
322 (reduce #'p-add (p-eval-list (cddr expr)))))))
323 (*
324 (if (endp (cddr expr)) ;unary
325 (p-eval (cdr expr))
326 (reduce #'(lambda (p q) (poly-mul ring-and-order p q)) (p-eval-list (cdr expr)))))
327 (/
328 ;; A polynomial can be divided by a scalar
329 (cond
330 ((endp (cddr expr))
331 ;; A special case (/ ?), the inverse
332 (coerce-coeff ring (apply (ring-div ring) (cdr expr)) vars))
333 (t
334 (let ((num (p-eval (cadr expr)))
335 (denom-inverse (apply (ring-div ring)
336 (cons (funcall (ring-unit ring))
337 (mapcar #'p-eval-scalar (cddr expr))))))
338 (scalar-times-poly ring denom-inverse num)))))
339 (expt
340 (cond
341 ((member (cadr expr) vars :test #'equalp)
342 ;;Special handling of (expt var pow)
343 (let ((pos (position (cadr expr) vars :test #'equalp)))
344 (make-poly-variable ring (length vars) pos (caddr expr))))
345 ((not (and (integerp (caddr expr)) (plusp (caddr expr))))
346 ;; Negative power means division in coefficient ring
347 ;; Non-integer power means non-polynomial coefficient
348 (coerce-coeff ring expr vars))
349 (t (poly-expt ring-and-order (p-eval (cadr expr)) (caddr expr)))))
350 (otherwise
351 (coerce-coeff ring expr vars)))))))
352
353(defun poly-eval-scalar (expr
354 &optional
355 (ring +ring-of-integers+)
356 &aux
357 (order #'lex>))
358 "Evaluate a scalar expression EXPR in ring RING."
359 (poly-lc (poly-eval expr nil ring order)))
360
361(defun spoly (ring-and-order f g
362 &aux
363 (ring (ro-ring ring-and-order)))
364 "It yields the S-polynomial of polynomials F and G."
365 (declare (type poly f g))
366 (let* ((lcm (monom-lcm (poly-lm f) (poly-lm g)))
367 (mf (monom-div lcm (poly-lm f)))
368 (mg (monom-div lcm (poly-lm g))))
369 (declare (type monom mf mg))
370 (multiple-value-bind (c cf cg)
371 (funcall (ring-ezgcd ring) (poly-lc f) (poly-lc g))
372 (declare (ignore c))
373 (poly-sub
374 ring-and-order
375 (scalar-times-poly ring cg (monom-times-poly mf f))
376 (scalar-times-poly ring cf (monom-times-poly mg g))))))
377
378
379(defun poly-primitive-part (ring p)
380 "Divide polynomial P with integer coefficients by gcd of its
381coefficients and return the result."
382 (declare (type poly p))
383 (if (poly-zerop p)
384 (values p 1)
385 (let ((c (poly-content ring p)))
386 (values (make-poly-from-termlist
387 (mapcar
388 #'(lambda (x)
389 (make-term :monom (term-monom x)
390 :coeff (funcall (ring-div ring) (term-coeff x) c)))
391 (poly-termlist p))
392 (poly-sugar p))
393 c))))
394
395(defun poly-content (ring p)
396 "Greatest common divisor of the coefficients of the polynomial P. Use the RING structure
397to compute the greatest common divisor."
398 (declare (type poly p))
399 (reduce (ring-gcd ring) (mapcar #'term-coeff (rest (poly-termlist p))) :initial-value (poly-lc p)))
400
401(defun read-infix-form (&key (stream t))
402 "Parser of infix expressions with integer/rational coefficients
403The parser will recognize two kinds of polynomial expressions:
404
405- polynomials in fully expanded forms with coefficients
406 written in front of symbolic expressions; constants can be optionally
407 enclosed in (); for example, the infix form
408 X^2-Y^2+(-4/3)*U^2*W^3-5
409 parses to
410 (+ (- (EXPT X 2) (EXPT Y 2)) (* (- (/ 4 3)) (EXPT U 2) (EXPT W 3)) (- 5))
411
412- lists of polynomials; for example
413 [X-Y, X^2+3*Z]
414 parses to
415 (:[ (- X Y) (+ (EXPT X 2) (* 3 Z)))
416 where the first symbol [ marks a list of polynomials.
417
418-other infix expressions, for example
419 [(X-Y)*(X+Y)/Z,(X+1)^2]
420parses to:
421 (:[ (/ (* (- X Y) (+ X Y)) Z) (EXPT (+ X 1) 2))
422Currently this function is implemented using M. Kantrowitz's INFIX package."
423 (read-from-string
424 (concatenate 'string
425 "#I("
426 (with-output-to-string (s)
427 (loop
428 (multiple-value-bind (line eof)
429 (read-line stream t)
430 (format s "~A" line)
431 (when eof (return)))))
432 ")")))
433
434(defun read-poly (vars &key
435 (stream t)
436 (ring +ring-of-integers+)
437 (order #'lex>))
438 "Reads an expression in prefix form from a stream STREAM.
439The expression read from the strem should represent a polynomial or a
440list of polynomials in variables VARS, over the ring RING. The
441polynomial or list of polynomials is returned, with terms in each
442polynomial ordered according to monomial order ORDER."
443 (poly-eval (read-infix-form :stream stream) vars ring order))
444
445(defun string->poly (str vars
446 &optional
447 (ring +ring-of-integers+)
448 (order #'lex>))
449 "Converts a string STR to a polynomial in variables VARS."
450 (with-input-from-string (s str)
451 (read-poly vars :stream s :ring ring :order order)))
452
453(defun poly->alist (p)
454 "Convert a polynomial P to an association list. Thus, the format of the
455returned value is ((MONOM[0] . COEFF[0]) (MONOM[1] . COEFF[1]) ...), where
456MONOM[I] is a list of exponents in the monomial and COEFF[I] is the
457corresponding coefficient in the ring."
458 (cond
459 ((poly-p p)
460 (mapcar #'term->cons (poly-termlist p)))
461 ((and (consp p) (eq (car p) :[))
462 (cons :[ (mapcar #'poly->alist (cdr p))))))
463
464(defun string->alist (str vars
465 &optional
466 (ring +ring-of-integers+)
467 (order #'lex>))
468 "Convert a string STR representing a polynomial or polynomial list to
469an association list (... (MONOM . COEFF) ...)."
470 (poly->alist (string->poly str vars ring order)))
471
472(defun poly-equal-no-sugar-p (p q)
473 "Compare polynomials for equality, ignoring sugar."
474 (equalp (poly-termlist p) (poly-termlist q)))
475
476(defun poly-set-equal-no-sugar-p (p q)
477 "Compare polynomial sets P and Q for equality, ignoring sugar."
478 (null (set-exclusive-or p q :test #'poly-equal-no-sugar-p )))
479
480(defun poly-list-equal-no-sugar-p (p q)
481 "Compare polynomial lists P and Q for equality, ignoring sugar."
482 (every #'poly-equal-no-sugar-p p q))
Note: See TracBrowser for help on using the repository browser.