| 1 | ;;; -*-  Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- | 
|---|
| 2 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
| 3 | ;;; | 
|---|
| 4 | ;;;  Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu> | 
|---|
| 5 | ;;; | 
|---|
| 6 | ;;;  This program is free software; you can redistribute it and/or modify | 
|---|
| 7 | ;;;  it under the terms of the GNU General Public License as published by | 
|---|
| 8 | ;;;  the Free Software Foundation; either version 2 of the License, or | 
|---|
| 9 | ;;;  (at your option) any later version. | 
|---|
| 10 | ;;; | 
|---|
| 11 | ;;;  This program is distributed in the hope that it will be useful, | 
|---|
| 12 | ;;;  but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|---|
| 13 | ;;;  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|---|
| 14 | ;;;  GNU General Public License for more details. | 
|---|
| 15 | ;;; | 
|---|
| 16 | ;;;  You should have received a copy of the GNU General Public License | 
|---|
| 17 | ;;;  along with this program; if not, write to the Free Software | 
|---|
| 18 | ;;;  Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | 
|---|
| 19 | ;;; | 
|---|
| 20 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
| 21 |  | 
|---|
| 22 |  | 
|---|
| 23 | (defpackage "POLYNOMIAL" | 
|---|
| 24 | (:use :cl :ring :ring-and-order :monomial :order :term :termlist :infix) | 
|---|
| 25 | (:export "POLY" | 
|---|
| 26 | "POLY-TERMLIST" | 
|---|
| 27 | "POLY-SUGAR" | 
|---|
| 28 | "POLY-LT" | 
|---|
| 29 | "MAKE-POLY-FROM-TERMLIST" | 
|---|
| 30 | "MAKE-POLY-ZERO" | 
|---|
| 31 | "MAKE-VARIABLE" | 
|---|
| 32 | "POLY-UNIT" | 
|---|
| 33 | "POLY-LM" | 
|---|
| 34 | "POLY-SECOND-LM" | 
|---|
| 35 | "POLY-SECOND-LT" | 
|---|
| 36 | "POLY-LC" | 
|---|
| 37 | "POLY-SECOND-LC" | 
|---|
| 38 | "POLY-ZEROP" | 
|---|
| 39 | "POLY-LENGTH" | 
|---|
| 40 | "SCALAR-TIMES-POLY" | 
|---|
| 41 | "SCALAR-TIMES-POLY-1" | 
|---|
| 42 | "MONOM-TIMES-POLY" | 
|---|
| 43 | "TERM-TIMES-POLY" | 
|---|
| 44 | "POLY-ADD" | 
|---|
| 45 | "POLY-SUB" | 
|---|
| 46 | "POLY-UMINUS" | 
|---|
| 47 | "POLY-MUL" | 
|---|
| 48 | "POLY-EXPT" | 
|---|
| 49 | "POLY-APPEND" | 
|---|
| 50 | "POLY-NREVERSE" | 
|---|
| 51 | "POLY-CONTRACT" | 
|---|
| 52 | "POLY-EXTEND" | 
|---|
| 53 | "POLY-ADD-VARIABLES" | 
|---|
| 54 | "POLY-LIST-ADD-VARIABLES" | 
|---|
| 55 | "POLY-STANDARD-EXTENSION" | 
|---|
| 56 | "SATURATION-EXTENSION" | 
|---|
| 57 | "POLYSATURATION-EXTENSION" | 
|---|
| 58 | "SATURATION-EXTENSION-1" | 
|---|
| 59 | "COERCE-COEFF" | 
|---|
| 60 | "POLY-EVAL" | 
|---|
| 61 | "POLY-EVAL-SCALAR" | 
|---|
| 62 | "SPOLY" | 
|---|
| 63 | "POLY-PRIMITIVE-PART" | 
|---|
| 64 | "POLY-CONTENT" | 
|---|
| 65 | "READ-INFIX-FORM" | 
|---|
| 66 | "READ-POLY" | 
|---|
| 67 | "STRING->POLY" | 
|---|
| 68 | "POLY->ALIST" | 
|---|
| 69 | "STRING->ALIST" | 
|---|
| 70 | )) | 
|---|
| 71 |  | 
|---|
| 72 | (in-package :polynomial) | 
|---|
| 73 |  | 
|---|
| 74 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
| 75 | ;; | 
|---|
| 76 | ;; Polynomials | 
|---|
| 77 | ;; | 
|---|
| 78 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
| 79 |  | 
|---|
| 80 | (defstruct (poly | 
|---|
| 81 | ;; | 
|---|
| 82 | ;; BOA constructor, by default constructs zero polynomial | 
|---|
| 83 | (:constructor make-poly-from-termlist (termlist &optional (sugar (termlist-sugar termlist)))) | 
|---|
| 84 | (:constructor make-poly-zero (&aux (termlist nil) (sugar -1))) | 
|---|
| 85 | ;; Constructor of polynomials representing a variable | 
|---|
| 86 | (:constructor make-variable (ring nvars pos &optional (power 1) | 
|---|
| 87 | &aux | 
|---|
| 88 | (termlist (list | 
|---|
| 89 | (make-term-variable ring nvars pos power))) | 
|---|
| 90 | (sugar power))) | 
|---|
| 91 | (:constructor poly-unit (ring dimension | 
|---|
| 92 | &aux | 
|---|
| 93 | (termlist (termlist-unit ring dimension)) | 
|---|
| 94 | (sugar 0)))) | 
|---|
| 95 | (termlist nil :type list) | 
|---|
| 96 | (sugar -1 :type fixnum)) | 
|---|
| 97 |  | 
|---|
| 98 | ;; Leading term | 
|---|
| 99 | (defmacro poly-lt (p) `(car (poly-termlist ,p))) | 
|---|
| 100 |  | 
|---|
| 101 | ;; Second term | 
|---|
| 102 | (defmacro poly-second-lt (p) `(cadar (poly-termlist ,p))) | 
|---|
| 103 |  | 
|---|
| 104 | ;; Leading monomial | 
|---|
| 105 | (defun poly-lm (p) (term-monom (poly-lt p))) | 
|---|
| 106 |  | 
|---|
| 107 | ;; Second monomial | 
|---|
| 108 | (defun poly-second-lm (p) (term-monom (poly-second-lt p))) | 
|---|
| 109 |  | 
|---|
| 110 | ;; Leading coefficient | 
|---|
| 111 | (defun poly-lc (p) (term-coeff (poly-lt p))) | 
|---|
| 112 |  | 
|---|
| 113 | ;; Second coefficient | 
|---|
| 114 | (defun poly-second-lc (p) (term-coeff (poly-second-lt p))) | 
|---|
| 115 |  | 
|---|
| 116 | ;; Testing for a zero polynomial | 
|---|
| 117 | (defun poly-zerop (p) (null (poly-termlist p))) | 
|---|
| 118 |  | 
|---|
| 119 | ;; The number of terms | 
|---|
| 120 | (defun poly-length (p) (length (poly-termlist p))) | 
|---|
| 121 |  | 
|---|
| 122 | (defun scalar-times-poly (ring c p) | 
|---|
| 123 | (declare (type ring ring) (poly p)) | 
|---|
| 124 | (make-poly-from-termlist (scalar-times-termlist ring c (poly-termlist p)) (poly-sugar p))) | 
|---|
| 125 |  | 
|---|
| 126 | ;; The scalar product omitting the head term | 
|---|
| 127 | (defun scalar-times-poly-1 (ring c p) | 
|---|
| 128 | (declare (type ring ring) (poly p)) | 
|---|
| 129 | (make-poly-from-termlist (scalar-times-termlist ring c (cdr (poly-termlist p))) (poly-sugar p))) | 
|---|
| 130 |  | 
|---|
| 131 | (defun monom-times-poly (m p) | 
|---|
| 132 | (declare (poly p)) | 
|---|
| 133 | (make-poly-from-termlist | 
|---|
| 134 | (monom-times-termlist m (poly-termlist p)) | 
|---|
| 135 | (+ (poly-sugar p) (monom-sugar m)))) | 
|---|
| 136 |  | 
|---|
| 137 | (defun term-times-poly (ring term p) | 
|---|
| 138 | (declare (type ring ring) (type term term) (type poly p)) | 
|---|
| 139 | (make-poly-from-termlist | 
|---|
| 140 | (term-times-termlist ring term (poly-termlist p)) | 
|---|
| 141 | (+ (poly-sugar p) (term-sugar term)))) | 
|---|
| 142 |  | 
|---|
| 143 | (defun poly-add (ring-and-order p q) | 
|---|
| 144 | (declare (type ring-and-order ring-and-order) (type poly p q)) | 
|---|
| 145 | (make-poly-from-termlist | 
|---|
| 146 | (termlist-add ring-and-order | 
|---|
| 147 | (poly-termlist p) | 
|---|
| 148 | (poly-termlist q)) | 
|---|
| 149 | (max (poly-sugar p) (poly-sugar q)))) | 
|---|
| 150 |  | 
|---|
| 151 | (defun poly-sub (ring-and-order p q) | 
|---|
| 152 | (declare (type ring-and-order ring-and-order) (type poly p q)) | 
|---|
| 153 | (make-poly-from-termlist | 
|---|
| 154 | (termlist-sub ring-and-order (poly-termlist p) (poly-termlist q)) | 
|---|
| 155 | (max (poly-sugar p) (poly-sugar q)))) | 
|---|
| 156 |  | 
|---|
| 157 | (defun poly-uminus (ring p) | 
|---|
| 158 | (declare (type ring ring) (type poly p)) | 
|---|
| 159 | (make-poly-from-termlist | 
|---|
| 160 | (termlist-uminus ring (poly-termlist p)) | 
|---|
| 161 | (poly-sugar p))) | 
|---|
| 162 |  | 
|---|
| 163 | (defun poly-mul (ring-and-order p q) | 
|---|
| 164 | (declare (type ring-and-order ring-and-order) (type poly p q)) | 
|---|
| 165 | (make-poly-from-termlist | 
|---|
| 166 | (termlist-mul ring-and-order (poly-termlist p) (poly-termlist q)) | 
|---|
| 167 | (+ (poly-sugar p) (poly-sugar q)))) | 
|---|
| 168 |  | 
|---|
| 169 | (defun poly-expt (ring-and-order p n) | 
|---|
| 170 | (declare (type ring-and-order ring-and-order) (type poly p)) | 
|---|
| 171 | (make-poly-from-termlist (termlist-expt ring-and-order (poly-termlist p) n) (* n (poly-sugar p)))) | 
|---|
| 172 |  | 
|---|
| 173 | (defun poly-append (&rest plist) | 
|---|
| 174 | (make-poly-from-termlist (apply #'append (mapcar #'poly-termlist plist)) | 
|---|
| 175 | (apply #'max (mapcar #'poly-sugar plist)))) | 
|---|
| 176 |  | 
|---|
| 177 | (defun poly-nreverse (p) | 
|---|
| 178 | (declare (type poly p)) | 
|---|
| 179 | (setf (poly-termlist p) (nreverse (poly-termlist p))) | 
|---|
| 180 | p) | 
|---|
| 181 |  | 
|---|
| 182 | (defun poly-contract (p &optional (k 1)) | 
|---|
| 183 | (declare (type poly p)) | 
|---|
| 184 | (make-poly-from-termlist (termlist-contract (poly-termlist p) k) | 
|---|
| 185 | (poly-sugar p))) | 
|---|
| 186 |  | 
|---|
| 187 | (defun poly-extend (p &optional (m (make-monom :dimension 1))) | 
|---|
| 188 | (declare (type poly p)) | 
|---|
| 189 | (make-poly-from-termlist | 
|---|
| 190 | (termlist-extend (poly-termlist p) m) | 
|---|
| 191 | (+ (poly-sugar p) (monom-sugar m)))) | 
|---|
| 192 |  | 
|---|
| 193 | (defun poly-add-variables (p k) | 
|---|
| 194 | (declare (type poly p)) | 
|---|
| 195 | (setf (poly-termlist p) (termlist-add-variables (poly-termlist p) k)) | 
|---|
| 196 | p) | 
|---|
| 197 |  | 
|---|
| 198 | (defun poly-list-add-variables (plist k) | 
|---|
| 199 | (mapcar #'(lambda (p) (poly-add-variables p k)) plist)) | 
|---|
| 200 |  | 
|---|
| 201 | (defun poly-standard-extension (plist &aux (k (length plist))) | 
|---|
| 202 | "Calculate [U1*P1,U2*P2,...,UK*PK], where PLIST=[P1,P2,...,PK]." | 
|---|
| 203 | (declare (list plist) (fixnum k)) | 
|---|
| 204 | (labels ((incf-power (g i) | 
|---|
| 205 | (dolist (x (poly-termlist g)) | 
|---|
| 206 | (incf (monom-elt (term-monom x) i))) | 
|---|
| 207 | (incf (poly-sugar g)))) | 
|---|
| 208 | (setf plist (poly-list-add-variables plist k)) | 
|---|
| 209 | (dotimes (i k plist) | 
|---|
| 210 | (incf-power (nth i plist) i)))) | 
|---|
| 211 |  | 
|---|
| 212 | (defun saturation-extension (ring f plist &aux (k (length plist)) (d (monom-dimension (poly-lm (car plist))))) | 
|---|
| 213 | "Calculate [F, U1*P1-1,U2*P2-1,...,UK*PK-1], where PLIST=[P1,P2,...,PK]." | 
|---|
| 214 | (setf f (poly-list-add-variables f k) | 
|---|
| 215 | plist (mapcar #'(lambda (x) | 
|---|
| 216 | (setf (poly-termlist x) (nconc (poly-termlist x) | 
|---|
| 217 | (list (make-term (make-monom :dimension d) | 
|---|
| 218 | (funcall (ring-uminus ring) (funcall (ring-unit ring))))))) | 
|---|
| 219 | x) | 
|---|
| 220 | (poly-standard-extension plist))) | 
|---|
| 221 | (append f plist)) | 
|---|
| 222 |  | 
|---|
| 223 |  | 
|---|
| 224 | (defun polysaturation-extension (ring f plist &aux (k (length plist)) | 
|---|
| 225 | (d (+ k (monom-dimension (poly-lm (car plist)))))) | 
|---|
| 226 | "Calculate [F, U1*P1+U2*P2+...+UK*PK-1], where PLIST=[P1,P2,...,PK]." | 
|---|
| 227 | (setf f (poly-list-add-variables f k) | 
|---|
| 228 | plist (apply #'poly-append (poly-standard-extension plist)) | 
|---|
| 229 | (cdr (last (poly-termlist plist))) (list (make-term (make-monom :dimension d) | 
|---|
| 230 | (funcall (ring-uminus ring) (funcall (ring-unit ring)))))) | 
|---|
| 231 | (append f (list plist))) | 
|---|
| 232 |  | 
|---|
| 233 | (defun saturation-extension-1 (ring f p) (polysaturation-extension ring f (list p))) | 
|---|
| 234 |  | 
|---|
| 235 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
| 236 | ;; | 
|---|
| 237 | ;; Evaluation of polynomial (prefix) expressions | 
|---|
| 238 | ;; | 
|---|
| 239 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
| 240 |  | 
|---|
| 241 | (defun coerce-coeff (ring expr vars) | 
|---|
| 242 | "Coerce an element of the coefficient ring to a constant polynomial." | 
|---|
| 243 | ;; Modular arithmetic handler by rat | 
|---|
| 244 | (make-poly-from-termlist (list (make-term (make-monom :dimension (length vars)) | 
|---|
| 245 | (funcall (ring-parse ring) expr))) | 
|---|
| 246 | 0)) | 
|---|
| 247 |  | 
|---|
| 248 | (defun poly-eval (expr vars | 
|---|
| 249 | &optional | 
|---|
| 250 | (ring *ring-of-integers*) | 
|---|
| 251 | (order #'lex>) | 
|---|
| 252 | (list-marker :[) | 
|---|
| 253 | &aux | 
|---|
| 254 | (ring-and-order (make-ring-and-order :ring ring :order order))) | 
|---|
| 255 | "Evaluate Lisp form EXPR to a polynomial or a list of polynomials in | 
|---|
| 256 | variables VARS. Return the resulting polynomial or list of polynomials. | 
|---|
| 257 | Standard arithmetical operators in form EXPR are replaced with their analogues | 
|---|
| 258 | in the ring of polynomials, and the resulting expression is evaluated, resulting | 
|---|
| 259 | in a polynomial or a list of polynomials in internal form. A similar operation | 
|---|
| 260 | in computer algebra system is called 'expand' or so." | 
|---|
| 261 | (labels ((p-eval (arg) (poly-eval arg vars ring order)) | 
|---|
| 262 | (p-eval-scalar (arg) (poly-eval-scalar arg)) | 
|---|
| 263 | (p-eval-list (args) (mapcar #'p-eval args)) | 
|---|
| 264 | (p-add (x y) (poly-add ring-and-order x y))) | 
|---|
| 265 | (cond | 
|---|
| 266 | ((null expr) (error "Empty expression")) | 
|---|
| 267 | ((eql expr 0) (make-poly-zero)) | 
|---|
| 268 | ((member expr vars :test #'equalp) | 
|---|
| 269 | (let ((pos (position expr vars :test #'equalp))) | 
|---|
| 270 | (make-variable ring (length vars) pos))) | 
|---|
| 271 | ((atom expr) | 
|---|
| 272 | (coerce-coeff ring expr vars)) | 
|---|
| 273 | ((eq (car expr) list-marker) | 
|---|
| 274 | (cons list-marker (p-eval-list (cdr expr)))) | 
|---|
| 275 | (t | 
|---|
| 276 | (case (car expr) | 
|---|
| 277 | (+ (reduce #'p-add (p-eval-list (cdr expr)))) | 
|---|
| 278 | (- (case (length expr) | 
|---|
| 279 | (1 (make-poly-zero)) | 
|---|
| 280 | (2 (poly-uminus ring (p-eval (cadr expr)))) | 
|---|
| 281 | (3 (poly-sub ring-and-order (p-eval (cadr expr)) (p-eval (caddr expr)))) | 
|---|
| 282 | (otherwise (poly-sub ring-and-order (p-eval (cadr expr)) | 
|---|
| 283 | (reduce #'p-add (p-eval-list (cddr expr))))))) | 
|---|
| 284 | (* | 
|---|
| 285 | (if (endp (cddr expr))                ;unary | 
|---|
| 286 | (p-eval (cdr expr)) | 
|---|
| 287 | (reduce #'(lambda (p q) (poly-mul ring-and-order p q)) (p-eval-list (cdr expr))))) | 
|---|
| 288 | (/ | 
|---|
| 289 | ;; A polynomial can be divided by a scalar | 
|---|
| 290 | (cond | 
|---|
| 291 | ((endp (cddr expr)) | 
|---|
| 292 | ;; A special case (/ ?), the inverse | 
|---|
| 293 | (coerce-coeff ring (apply (ring-div ring) (cdr expr)) vars)) | 
|---|
| 294 | (t | 
|---|
| 295 | (let ((num (p-eval (cadr expr))) | 
|---|
| 296 | (denom-inverse (apply (ring-div ring) | 
|---|
| 297 | (cons (funcall (ring-unit ring)) | 
|---|
| 298 | (mapcar #'p-eval-scalar (cddr expr)))))) | 
|---|
| 299 | (scalar-times-poly ring denom-inverse num))))) | 
|---|
| 300 | (expt | 
|---|
| 301 | (cond | 
|---|
| 302 | ((member (cadr expr) vars :test #'equalp) | 
|---|
| 303 | ;;Special handling of (expt var pow) | 
|---|
| 304 | (let ((pos (position (cadr expr) vars :test #'equalp))) | 
|---|
| 305 | (make-variable ring (length vars) pos (caddr expr)))) | 
|---|
| 306 | ((not (and (integerp (caddr expr)) (plusp (caddr expr)))) | 
|---|
| 307 | ;; Negative power means division in coefficient ring | 
|---|
| 308 | ;; Non-integer power means non-polynomial coefficient | 
|---|
| 309 | (coerce-coeff ring expr vars)) | 
|---|
| 310 | (t (poly-expt ring-and-order (p-eval (cadr expr)) (caddr expr))))) | 
|---|
| 311 | (otherwise | 
|---|
| 312 | (coerce-coeff ring expr vars))))))) | 
|---|
| 313 |  | 
|---|
| 314 | (defun poly-eval-scalar (expr | 
|---|
| 315 | &optional | 
|---|
| 316 | (ring *ring-of-integers*) | 
|---|
| 317 | &aux | 
|---|
| 318 | (order #'lex>)) | 
|---|
| 319 | "Evaluate a scalar expression EXPR in ring RING." | 
|---|
| 320 | (poly-lc (poly-eval expr nil ring order))) | 
|---|
| 321 |  | 
|---|
| 322 | (defun spoly (ring f g) | 
|---|
| 323 | "It yields the S-polynomial of polynomials F and G." | 
|---|
| 324 | (declare (type poly f g)) | 
|---|
| 325 | (let* ((lcm (monom-lcm (poly-lm f) (poly-lm g))) | 
|---|
| 326 | (mf (monom-div lcm (poly-lm f))) | 
|---|
| 327 | (mg (monom-div lcm (poly-lm g)))) | 
|---|
| 328 | (declare (type monom mf mg)) | 
|---|
| 329 | (multiple-value-bind (c cf cg) | 
|---|
| 330 | (funcall (ring-ezgcd ring) (poly-lc f) (poly-lc g)) | 
|---|
| 331 | (declare (ignore c)) | 
|---|
| 332 | (poly-sub | 
|---|
| 333 | ring | 
|---|
| 334 | (scalar-times-poly ring cg (monom-times-poly mf f)) | 
|---|
| 335 | (scalar-times-poly ring cf (monom-times-poly mg g)))))) | 
|---|
| 336 |  | 
|---|
| 337 |  | 
|---|
| 338 | (defun poly-primitive-part (ring p) | 
|---|
| 339 | "Divide polynomial P with integer coefficients by gcd of its | 
|---|
| 340 | coefficients and return the result." | 
|---|
| 341 | (declare (type poly p)) | 
|---|
| 342 | (if (poly-zerop p) | 
|---|
| 343 | (values p 1) | 
|---|
| 344 | (let ((c (poly-content ring p))) | 
|---|
| 345 | (values (make-poly-from-termlist (mapcar | 
|---|
| 346 | #'(lambda (x) | 
|---|
| 347 | (make-term (term-monom x) | 
|---|
| 348 | (funcall (ring-div ring) (term-coeff x) c))) | 
|---|
| 349 | (poly-termlist p)) | 
|---|
| 350 | (poly-sugar p)) | 
|---|
| 351 | c)))) | 
|---|
| 352 |  | 
|---|
| 353 | (defun poly-content (ring p) | 
|---|
| 354 | "Greatest common divisor of the coefficients of the polynomial P. Use the RING structure | 
|---|
| 355 | to compute the greatest common divisor." | 
|---|
| 356 | (declare (type poly p)) | 
|---|
| 357 | (reduce (ring-gcd ring) (mapcar #'term-coeff (rest (poly-termlist p))) :initial-value (poly-lc p))) | 
|---|
| 358 |  | 
|---|
| 359 | (defun read-infix-form (&key (stream t)) | 
|---|
| 360 | "Parser of infix expressions with integer/rational coefficients | 
|---|
| 361 | The parser will recognize two kinds of polynomial expressions: | 
|---|
| 362 |  | 
|---|
| 363 | - polynomials in fully expanded forms with coefficients | 
|---|
| 364 | written in front of symbolic expressions; constants can be optionally | 
|---|
| 365 | enclosed in (); for example, the infix form | 
|---|
| 366 | X^2-Y^2+(-4/3)*U^2*W^3-5 | 
|---|
| 367 | parses to | 
|---|
| 368 | (+ (- (EXPT X 2) (EXPT Y 2)) (* (- (/ 4 3)) (EXPT U 2) (EXPT W 3)) (- 5)) | 
|---|
| 369 |  | 
|---|
| 370 | - lists of polynomials; for example | 
|---|
| 371 | [X-Y, X^2+3*Z] | 
|---|
| 372 | parses to | 
|---|
| 373 | (:[ (- X Y) (+ (EXPT X 2) (* 3 Z))) | 
|---|
| 374 | where the first symbol [ marks a list of polynomials. | 
|---|
| 375 |  | 
|---|
| 376 | -other infix expressions, for example | 
|---|
| 377 | [(X-Y)*(X+Y)/Z,(X+1)^2] | 
|---|
| 378 | parses to: | 
|---|
| 379 | (:[ (/ (* (- X Y) (+ X Y)) Z) (EXPT (+ X 1) 2)) | 
|---|
| 380 | Currently this function is implemented using M. Kantrowitz's INFIX package." | 
|---|
| 381 | (read-from-string | 
|---|
| 382 | (concatenate 'string | 
|---|
| 383 | "#I(" | 
|---|
| 384 | (with-output-to-string (s) | 
|---|
| 385 | (loop | 
|---|
| 386 | (multiple-value-bind (line eof) | 
|---|
| 387 | (read-line stream t) | 
|---|
| 388 | (format s "~A" line) | 
|---|
| 389 | (when eof (return))))) | 
|---|
| 390 | ")"))) | 
|---|
| 391 |  | 
|---|
| 392 | (defun read-poly (vars &key | 
|---|
| 393 | (stream t) | 
|---|
| 394 | (ring *ring-of-integers*) | 
|---|
| 395 | (order #'lex>)) | 
|---|
| 396 | "Reads an expression in prefix form from a stream STREAM. | 
|---|
| 397 | The expression read from the strem should represent a polynomial or a | 
|---|
| 398 | list of polynomials in variables VARS, over the ring RING.  The | 
|---|
| 399 | polynomial or list of polynomials is returned, with terms in each | 
|---|
| 400 | polynomial ordered according to monomial order ORDER." | 
|---|
| 401 | (poly-eval (read-infix-form :stream stream) vars ring order)) | 
|---|
| 402 |  | 
|---|
| 403 | (defun string->poly (str vars | 
|---|
| 404 | &optional | 
|---|
| 405 | (ring *ring-of-integers*) | 
|---|
| 406 | (order #'lex>)) | 
|---|
| 407 | "Converts a string STR to a polynomial in variables VARS." | 
|---|
| 408 | (with-input-from-string (s str) | 
|---|
| 409 | (read-poly vars :stream s :ring ring :order order))) | 
|---|
| 410 |  | 
|---|
| 411 | (defun poly->alist (p) | 
|---|
| 412 | "Convert a polynomial P to an association list. Thus, the format of the | 
|---|
| 413 | returned value is  ((MONOM[0] . COEFF[0]) (MONOM[1] . COEFF[1]) ...), where | 
|---|
| 414 | MONOM[I] is a list of exponents in the monomial and COEFF[I] is the | 
|---|
| 415 | corresponding coefficient in the ring." | 
|---|
| 416 | (cond | 
|---|
| 417 | ((poly-p p) | 
|---|
| 418 | (mapcar #'term->cons (poly-termlist p))) | 
|---|
| 419 | ((and (consp p) (eq (car p) :[)) | 
|---|
| 420 | (cons :[ (mapcar #'poly->alist (cdr p)))))) | 
|---|
| 421 |  | 
|---|
| 422 | (defun string->alist (str vars | 
|---|
| 423 | &optional | 
|---|
| 424 | (ring *ring-of-integers*) | 
|---|
| 425 | (order #'lex>)) | 
|---|
| 426 | "Convert a string STR representing a polynomial or polynomial list to | 
|---|
| 427 | an association list (... (MONOM . COEFF) ...)." | 
|---|
| 428 | (poly->alist (string->poly str vars ring order))) | 
|---|