[52] | 1 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 2 | ;;
|
---|
| 3 | ;; Polynomials
|
---|
| 4 | ;;
|
---|
| 5 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 6 |
|
---|
| 7 | (defstruct (poly
|
---|
| 8 | ;;
|
---|
| 9 | ;; BOA constructor, by default constructs zero polynomial
|
---|
| 10 | (:constructor make-poly-from-termlist (termlist &optional (sugar (termlist-sugar termlist))))
|
---|
| 11 | (:constructor make-poly-zero (&aux (termlist nil) (sugar -1)))
|
---|
| 12 | ;; Constructor of polynomials representing a variable
|
---|
| 13 | (:constructor make-variable (ring nvars pos &optional (power 1)
|
---|
[53] | 14 | &aux
|
---|
| 15 | (termlist (list
|
---|
| 16 | (make-term-variable ring nvars pos power)))
|
---|
| 17 | (sugar power)))
|
---|
| 18 | (:constructor poly-unit (ring dimension
|
---|
| 19 | &aux
|
---|
| 20 | (termlist (termlist-unit ring dimension))
|
---|
| 21 | (sugar 0))))
|
---|
[52] | 22 | (termlist nil :type list)
|
---|
| 23 | (sugar -1 :type fixnum))
|
---|
| 24 |
|
---|
| 25 | ;; Leading term
|
---|
| 26 | (defmacro poly-lt (p) `(car (poly-termlist ,p)))
|
---|
| 27 |
|
---|
| 28 | ;; Second term
|
---|
| 29 | (defmacro poly-second-lt (p) `(cadar (poly-termlist ,p)))
|
---|
| 30 |
|
---|
| 31 | ;; Leading monomial
|
---|
| 32 | (defun poly-lm (p) (term-monom (poly-lt p)))
|
---|
| 33 |
|
---|
| 34 | ;; Second monomial
|
---|
| 35 | (defun poly-second-lm (p) (term-monom (poly-second-lt p)))
|
---|
| 36 |
|
---|
| 37 | ;; Leading coefficient
|
---|
| 38 | (defun poly-lc (p) (term-coeff (poly-lt p)))
|
---|
| 39 |
|
---|
| 40 | ;; Second coefficient
|
---|
| 41 | (defun poly-second-lc (p) (term-coeff (poly-second-lt p)))
|
---|
| 42 |
|
---|
| 43 | ;; Testing for a zero polynomial
|
---|
| 44 | (defun poly-zerop (p) (null (poly-termlist p)))
|
---|
| 45 |
|
---|
| 46 | ;; The number of terms
|
---|
| 47 | (defun poly-length (p) (length (poly-termlist p)))
|
---|
| 48 |
|
---|
| 49 | (defun scalar-times-poly (ring c p)
|
---|
| 50 | (make-poly-from-termlist (scalar-times-termlist ring c (poly-termlist p)) (poly-sugar p)))
|
---|
| 51 |
|
---|
| 52 | ;; The scalar product omitting the head term
|
---|
| 53 | (defun scalar-times-poly-1 (ring c p)
|
---|
| 54 | (make-poly-from-termlist (scalar-times-termlist ring c (cdr (poly-termlist p))) (poly-sugar p)))
|
---|
[53] | 55 |
|
---|
[52] | 56 | (defun monom-times-poly (m p)
|
---|
| 57 | (make-poly-from-termlist (monom-times-termlist m (poly-termlist p)) (+ (poly-sugar p) (monom-sugar m))))
|
---|
| 58 |
|
---|
| 59 | (defun term-times-poly (ring term p)
|
---|
| 60 | (make-poly-from-termlist (term-times-termlist ring term (poly-termlist p)) (+ (poly-sugar p) (term-sugar term))))
|
---|
| 61 |
|
---|
| 62 | (defun poly-add (ring p q)
|
---|
| 63 | (make-poly-from-termlist (termlist-add ring (poly-termlist p) (poly-termlist q)) (max (poly-sugar p) (poly-sugar q))))
|
---|
| 64 |
|
---|
| 65 | (defun poly-sub (ring p q)
|
---|
| 66 | (make-poly-from-termlist (termlist-sub ring (poly-termlist p) (poly-termlist q)) (max (poly-sugar p) (poly-sugar q))))
|
---|
| 67 |
|
---|
| 68 | (defun poly-uminus (ring p)
|
---|
| 69 | (make-poly-from-termlist (termlist-uminus ring (poly-termlist p)) (poly-sugar p)))
|
---|
| 70 |
|
---|
| 71 | (defun poly-mul (ring p q)
|
---|
| 72 | (make-poly-from-termlist (termlist-mul ring (poly-termlist p) (poly-termlist q)) (+ (poly-sugar p) (poly-sugar q))))
|
---|
| 73 |
|
---|
| 74 | (defun poly-expt (ring p n)
|
---|
| 75 | (make-poly-from-termlist (termlist-expt ring (poly-termlist p) n) (* n (poly-sugar p))))
|
---|
| 76 |
|
---|
| 77 | (defun poly-append (&rest plist)
|
---|
| 78 | (make-poly-from-termlist (apply #'append (mapcar #'poly-termlist plist))
|
---|
[53] | 79 | (apply #'max (mapcar #'poly-sugar plist))))
|
---|
[52] | 80 |
|
---|
| 81 | (defun poly-nreverse (p)
|
---|
| 82 | (setf (poly-termlist p) (nreverse (poly-termlist p)))
|
---|
| 83 | p)
|
---|
| 84 |
|
---|
| 85 | (defun poly-contract (p &optional (k 1))
|
---|
| 86 | (make-poly-from-termlist (termlist-contract (poly-termlist p) k)
|
---|
[53] | 87 | (poly-sugar p)))
|
---|
[52] | 88 |
|
---|
| 89 | (defun poly-extend (p &optional (m (make-monom 1 :initial-element 0)))
|
---|
| 90 | (make-poly-from-termlist
|
---|
| 91 | (termlist-extend (poly-termlist p) m)
|
---|
| 92 | (+ (poly-sugar p) (monom-sugar m))))
|
---|
| 93 |
|
---|
| 94 | (defun poly-add-variables (p k)
|
---|
| 95 | (setf (poly-termlist p) (termlist-add-variables (poly-termlist p) k))
|
---|
| 96 | p)
|
---|
| 97 |
|
---|
| 98 | (defun poly-list-add-variables (plist k)
|
---|
| 99 | (mapcar #'(lambda (p) (poly-add-variables p k)) plist))
|
---|
| 100 |
|
---|
| 101 | (defun poly-standard-extension (plist &aux (k (length plist)))
|
---|
| 102 | "Calculate [U1*P1,U2*P2,...,UK*PK], where PLIST=[P1,P2,...,PK]."
|
---|
| 103 | (declare (list plist) (fixnum k))
|
---|
| 104 | (labels ((incf-power (g i)
|
---|
| 105 | (dolist (x (poly-termlist g))
|
---|
| 106 | (incf (monom-elt (term-monom x) i)))
|
---|
| 107 | (incf (poly-sugar g))))
|
---|
| 108 | (setf plist (poly-list-add-variables plist k))
|
---|
| 109 | (dotimes (i k plist)
|
---|
| 110 | (incf-power (nth i plist) i))))
|
---|
| 111 |
|
---|
| 112 | (defun saturation-extension (ring f plist &aux (k (length plist)) (d (monom-dimension (poly-lm (car plist)))))
|
---|
| 113 | "Calculate [F, U1*P1-1,U2*P2-1,...,UK*PK-1], where PLIST=[P1,P2,...,PK]."
|
---|
| 114 | (setf f (poly-list-add-variables f k)
|
---|
| 115 | plist (mapcar #'(lambda (x)
|
---|
| 116 | (setf (poly-termlist x) (nconc (poly-termlist x)
|
---|
| 117 | (list (make-term (make-monom d :initial-element 0)
|
---|
| 118 | (funcall (ring-uminus ring) (funcall (ring-unit ring)))))))
|
---|
| 119 | x)
|
---|
| 120 | (poly-standard-extension plist)))
|
---|
| 121 | (append f plist))
|
---|
| 122 |
|
---|
| 123 |
|
---|
| 124 | (defun polysaturation-extension (ring f plist &aux (k (length plist))
|
---|
[53] | 125 | (d (+ k (length (poly-lm (car plist))))))
|
---|
[52] | 126 | "Calculate [F, U1*P1+U2*P2+...+UK*PK-1], where PLIST=[P1,P2,...,PK]."
|
---|
| 127 | (setf f (poly-list-add-variables f k)
|
---|
| 128 | plist (apply #'poly-append (poly-standard-extension plist))
|
---|
| 129 | (cdr (last (poly-termlist plist))) (list (make-term (make-monom d :initial-element 0)
|
---|
| 130 | (funcall (ring-uminus ring) (funcall (ring-unit ring))))))
|
---|
| 131 | (append f (list plist)))
|
---|
| 132 |
|
---|
| 133 | (defun saturation-extension-1 (ring f p) (polysaturation-extension ring f (list p)))
|
---|
[53] | 134 |
|
---|
| 135 | |
---|
| 136 |
|
---|
| 137 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 138 | ;;
|
---|
| 139 | ;; Evaluation of polynomial (prefix) expressions
|
---|
| 140 | ;;
|
---|
| 141 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 142 |
|
---|
| 143 | (defun coerce-coeff (ring expr vars)
|
---|
| 144 | "Coerce an element of the coefficient ring to a constant polynomial."
|
---|
| 145 | ;; Modular arithmetic handler by rat
|
---|
| 146 | (make-poly-from-termlist (list (make-term (make-monom (length vars) :initial-element 0)
|
---|
| 147 | (funcall (ring-parse ring) expr)))
|
---|
| 148 | 0))
|
---|
| 149 |
|
---|
| 150 | (defun poly-eval (ring expr vars &optional (list-marker '[))
|
---|
| 151 | (labels ((p-eval (arg) (poly-eval ring arg vars))
|
---|
| 152 | (p-eval-list (args) (mapcar #'p-eval args))
|
---|
| 153 | (p-add (x y) (poly-add ring x y)))
|
---|
| 154 | (cond
|
---|
| 155 | ((eql expr 0) (make-poly-zero))
|
---|
| 156 | ((member expr vars :test #'equalp)
|
---|
| 157 | (let ((pos (position expr vars :test #'equalp)))
|
---|
| 158 | (make-variable ring (length vars) pos)))
|
---|
| 159 | ((atom expr)
|
---|
| 160 | (coerce-coeff ring expr vars))
|
---|
| 161 | ((eq (car expr) list-marker)
|
---|
| 162 | (cons list-marker (p-eval-list (cdr expr))))
|
---|
| 163 | (t
|
---|
| 164 | (case (car expr)
|
---|
| 165 | (+ (reduce #'p-add (p-eval-list (cdr expr))))
|
---|
| 166 | (- (case (length expr)
|
---|
| 167 | (1 (make-poly-zero))
|
---|
| 168 | (2 (poly-uminus ring (p-eval (cadr expr))))
|
---|
| 169 | (3 (poly-sub ring (p-eval (cadr expr)) (p-eval (caddr expr))))
|
---|
| 170 | (otherwise (poly-sub ring (p-eval (cadr expr))
|
---|
| 171 | (reduce #'p-add (p-eval-list (cddr expr)))))))
|
---|
| 172 | (*
|
---|
| 173 | (if (endp (cddr expr)) ;unary
|
---|
| 174 | (p-eval (cdr expr))
|
---|
| 175 | (reduce #'(lambda (p q) (poly-mul ring p q)) (p-eval-list (cdr expr)))))
|
---|
| 176 | (expt
|
---|
| 177 | (cond
|
---|
| 178 | ((member (cadr expr) vars :test #'equalp)
|
---|
| 179 | ;;Special handling of (expt var pow)
|
---|
| 180 | (let ((pos (position (cadr expr) vars :test #'equalp)))
|
---|
| 181 | (make-variable ring (length vars) pos (caddr expr))))
|
---|
| 182 | ((not (and (integerp (caddr expr)) (plusp (caddr expr))))
|
---|
| 183 | ;; Negative power means division in coefficient ring
|
---|
| 184 | ;; Non-integer power means non-polynomial coefficient
|
---|
| 185 | (coerce-coeff ring expr vars))
|
---|
| 186 | (t (poly-expt ring (p-eval (cadr expr)) (caddr expr)))))
|
---|
| 187 | (otherwise
|
---|
| 188 | (coerce-coeff ring expr vars)))))))
|
---|
[55] | 189 |
|
---|
| 190 | (defun spoly (ring f g)
|
---|
| 191 | "It yields the S-polynomial of polynomials F and G."
|
---|
| 192 | (declare (type poly f g))
|
---|
| 193 | (let* ((lcm (monom-lcm (poly-lm f) (poly-lm g)))
|
---|
| 194 | (mf (monom-div lcm (poly-lm f)))
|
---|
| 195 | (mg (monom-div lcm (poly-lm g))))
|
---|
| 196 | (declare (type monom mf mg))
|
---|
| 197 | (multiple-value-bind (c cf cg)
|
---|
| 198 | (funcall (ring-ezgcd ring) (poly-lc f) (poly-lc g))
|
---|
| 199 | (declare (ignore c))
|
---|
| 200 | (poly-sub
|
---|
| 201 | ring
|
---|
| 202 | (scalar-times-poly ring cg (monom-times-poly mf f))
|
---|
[53] | 203 | (scalar-times-poly ring cf (monom-times-poly mg g))))))
|
---|
| 204 |
|
---|
[55] | 205 |
|
---|
| 206 | (defun poly-primitive-part (ring p)
|
---|
| 207 | "Divide polynomial P with integer coefficients by gcd of its
|
---|
| 208 | coefficients and return the result."
|
---|
| 209 | (declare (type poly p))
|
---|
| 210 | (if (poly-zerop p)
|
---|
| 211 | (values p 1)
|
---|
| 212 | (let ((c (poly-content ring p)))
|
---|
| 213 | (values (make-poly-from-termlist (mapcar
|
---|
| 214 | #'(lambda (x)
|
---|
| 215 | (make-term (term-monom x)
|
---|
| 216 | (funcall (ring-div ring) (term-coeff x) c)))
|
---|
| 217 | (poly-termlist p))
|
---|
| 218 | (poly-sugar p))
|
---|
| 219 | c))))
|
---|
| 220 |
|
---|
| 221 | (defun poly-content (ring p)
|
---|
| 222 | "Greatest common divisor of the coefficients of the polynomial P. Use the RING structure
|
---|
| 223 | to compute the greatest common divisor."
|
---|
| 224 | (declare (type poly p))
|
---|
[57] | 225 | (reduce (ring-gcd ring) (mapcar #'term-coeff (rest (poly-termlist p))) :initial-value (poly-lc p)))
|
---|
| 226 |
|
---|