close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/polynomial.lisp@ 4446

Last change on this file since 4446 was 4444, checked in by Marek Rychlik, 9 years ago

* empty log message *

File size: 24.6 KB
RevLine 
[3400]1;;----------------------------------------------------------------
[1201]2;;; -*- Mode: Lisp -*-
[77]3;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
4;;;
5;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
6;;;
7;;; This program is free software; you can redistribute it and/or modify
8;;; it under the terms of the GNU General Public License as published by
9;;; the Free Software Foundation; either version 2 of the License, or
10;;; (at your option) any later version.
11;;;
12;;; This program is distributed in the hope that it will be useful,
13;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
14;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15;;; GNU General Public License for more details.
16;;;
17;;; You should have received a copy of the GNU General Public License
18;;; along with this program; if not, write to the Free Software
19;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20;;;
21;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
22
[431]23(defpackage "POLYNOMIAL"
[4325]24 (:use :cl :utils :monom :copy :ring)
[2596]25 (:export "POLY"
[3270]26 "POLY-DIMENSION"
[2596]27 "POLY-TERMLIST"
[3016]28 "POLY-TERM-ORDER"
[3509]29 "POLY-INSERT-TERM"
[3690]30 "SCALAR-MULTIPLY-BY"
31 "SCALAR-DIVIDE-BY"
[3642]32 "LEADING-TERM"
[3657]33 "LEADING-MONOMIAL"
[3642]34 "LEADING-COEFFICIENT"
[3657]35 "SECOND-LEADING-TERM"
36 "SECOND-LEADING-MONOMIAL"
37 "SECOND-LEADING-COEFFICIENT"
[3642]38 "ADD-TO"
[3646]39 "ADD"
[3642]40 "SUBTRACT-FROM"
[3646]41 "SUBTRACT"
[3071]42 "CHANGE-TERM-ORDER"
[3099]43 "STANDARD-EXTENSION"
[3101]44 "STANDARD-EXTENSION-1"
[3109]45 "STANDARD-SUM"
[3094]46 "SATURATION-EXTENSION"
[3655]47 "ALIST->POLY"
[4442]48 "POLY->ALIST"
[3852]49 "->INFIX"
[3655]50 "UNIVERSAL-EZGCD"
[3678]51 "S-POLYNOMIAL"
[3686]52 "POLY-CONTENT"
[3692]53 "POLY-PRIMITIVE-PART"
[3714]54 "SATURATION-EXTENSION-1"
[3737]55 "MAKE-POLY-VARIABLE"
[3821]56 "MAKE-POLY-CONSTANT"
[4053]57 "MAKE-ZERO-FOR"
58 "MAKE-UNIT-FOR"
[3778]59 "UNIVERSAL-EXPT"
[3969]60 "UNIVERSAL-EQUALP"
[4191]61 "UNIVERSAL-ZEROP"
[3969]62 "POLY-LENGTH"
[4062]63 "POLY-REVERSE"
[3900]64 "POLY-P"
[3901]65 "+LIST-MARKER+"
[4366]66 "POLY-EVAL"
67 "*COEFFICIENT-CLASS*")
[3489]68 (:documentation "Implements polynomials. A polynomial is essentially
69a mapping of monomials of the same degree to coefficients. The
70momomials are ordered according to a monomial order."))
[143]71
[431]72(in-package :polynomial)
73
[1927]74(proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0)))
[52]75
[4347]76(defclass poly (ring)
[3253]77 ((dimension :initform nil
[3250]78 :initarg :dimension
79 :accessor poly-dimension
[3242]80 :documentation "Shared dimension of all terms, the number of variables")
[3250]81 (termlist :initform nil :initarg :termlist :accessor poly-termlist
[3619]82 :documentation "List of terms.")
[3250]83 (order :initform #'lex> :initarg :order :accessor poly-term-order
[2697]84 :documentation "Monomial/term order."))
[3262]85 (:default-initargs :dimension nil :termlist nil :order #'lex>)
[2695]86 (:documentation "A polynomial with a list of terms TERMLIST, ordered
[2696]87according to term order ORDER, which defaults to LEX>."))
[2442]88
[2471]89(defmethod print-object ((self poly) stream)
[3241]90 (print-unreadable-object (self stream :type t :identity t)
[3243]91 (with-accessors ((dimension poly-dimension)
92 (termlist poly-termlist)
93 (order poly-term-order))
[3237]94 self
[3244]95 (format stream "DIMENSION=~A TERMLIST=~A ORDER=~A"
96 dimension termlist order))))
[2469]97
[4114]98(defmethod copy-instance :around ((object poly) &rest initargs &key &allow-other-keys)
[4115]99 "Returns a deep copy of the polynomial POLY, by copying the TERMLIST and its terms."
[4114]100 (declare (ignore object initargs))
101 (let ((copy (call-next-method)))
102 (with-slots (termlist)
103 copy
104 (setf termlist (mapcar #'copy-instance termlist)))
105 copy))
106
107
[3015]108(defgeneric change-term-order (self other)
[3012]109 (:documentation "Change term order of SELF to the term order of OTHER.")
[3010]110 (:method ((self poly) (other poly))
111 (unless (eq (poly-term-order self) (poly-term-order other))
[3620]112 (setf (poly-termlist self) (sort (poly-termlist self) (poly-term-order other))
[3010]113 (poly-term-order self) (poly-term-order other)))
[3012]114 self))
[3010]115
[3621]116(defgeneric poly-insert-term (self term)
[3622]117 (:documentation "Insert a term TERM into SELF before all other
[4329]118terms. Order is not enforced.")
[3621]119 (:method ((self poly) (term term))
[3510]120 (cond ((null (poly-dimension self))
[3621]121 (setf (poly-dimension self) (monom-dimension term)))
122 (t (assert (= (poly-dimension self) (monom-dimension term)))))
123 (push term (poly-termlist self))
[3510]124 self))
125
[3622]126(defgeneric poly-append-term (self term)
127 (:documentation "Append a term TERM to SELF after all other terms. Order is not enforced.")
128 (:method ((self poly) (term term))
[3510]129 (cond ((null (poly-dimension self))
[3622]130 (setf (poly-dimension self) (monom-dimension term)))
131 (t (assert (= (poly-dimension self) (monom-dimension term)))))
132 (setf (cdr (last (poly-termlist self))) (list term))
[3510]133 self))
134
[3095]135(defun alist->poly (alist &aux (poly (make-instance 'poly)))
[3126]136 "It reads polynomial from an alist formatted as ( ... (exponents . coeff) ...).
137It can be used to enter simple polynomials by hand, e.g the polynomial
138in two variables, X and Y, given in standard notation as:
139
140 3*X^2*Y^3+2*Y+7
141
142can be entered as
[4442]143(ALIST->POLY '(((0 0) . 7) ((0 1) . 2) ((2 3) . 3) )). NOTE: the
144terms are entered in the increasing order.
[3126]145
146NOTE: The primary use is for low-level debugging of the package."
[3099]147 (dolist (x alist poly)
[3705]148 (poly-insert-term poly (make-instance 'term :exponents (car x) :coeff (cdr x)))))
[3092]149
[4442]150(defun poly->alist (p)
151 "Convert a polynomial P to an association list. Thus, the format of the
152returned value is ((MONOM[0] . COEFF[0]) (MONOM[1] . COEFF[1]) ...), where
153MONOM[I] is a list of exponents in the monomial and COEFF[I] is the
154corresponding coefficient in the ring."
155 (cond
156 ((poly-p p)
157 (mapcar #'->list (poly-termlist p)))
158 ((and (consp p) (eq (car p) :[))
159 (cons :[ (mapcar #'poly->alist (cdr p))))))
160
161
162
[3877]163(defmethod update-instance-for-different-class :after ((old term) (new poly) &key)
[3786]164 "Converts OLD of class TERM to a NEW of class POLY, by making it into a 1-element TERMLIST."
[3401]165 (reinitialize-instance new
166 :dimension (monom-dimension old)
[3786]167 :termlist (list old)))
[3796]168
[3877]169(defmethod update-instance-for-different-class :after ((old monom) (new poly) &key)
[3796]170 "Converts OLD of class MONOM to a NEW of class POLY, by making it into a 1-element TERMLIST."
171 (reinitialize-instance new
172 :dimension (monom-dimension old)
[3797]173 :termlist (list (change-class old 'term))))
[3403]174
[3624]175(defmethod universal-equalp ((self poly) (other poly))
176 "Implements equality of polynomials."
177 (and (eql (poly-dimension self) (poly-dimension other))
178 (every #'universal-equalp (poly-termlist self) (poly-termlist other))
179 (eq (poly-term-order self) (poly-term-order other))))
[2650]180
[3624]181(defgeneric leading-term (object)
[2442]182 (:method ((self poly))
[2525]183 (car (poly-termlist self)))
184 (:documentation "The leading term of a polynomial, or NIL for zero polynomial."))
[52]185
[3625]186(defgeneric second-leading-term (object)
[2442]187 (:method ((self poly))
[2525]188 (cadar (poly-termlist self)))
189 (:documentation "The second leading term of a polynomial, or NIL for a polynomial with at most one term."))
[52]190
[3656]191(defgeneric leading-monomial (object)
192 (:method ((self poly))
193 (change-class (copy-instance (leading-term self)) 'monom))
194 (:documentation "The leading monomial of a polynomial, or NIL for zero polynomial."))
195
196(defgeneric second-leading-monomial (object)
197 (:method ((self poly))
198 (change-class (copy-instance (second-leading-term self)) 'monom))
199 (:documentation "The leading monomial of a polynomial, or NIL for zero polynomial."))
200
[3625]201(defgeneric leading-coefficient (object)
[2442]202 (:method ((self poly))
[3642]203 (term-coeff (leading-term self)))
[2545]204 (:documentation "The leading coefficient of a polynomial. It signals error for a zero polynomial."))
[52]205
[2442]206(defgeneric second-leading-coefficient (object)
207 (:method ((self poly))
[3645]208 (term-coeff (second-leading-term self)))
[2906]209 (:documentation "The second leading coefficient of a polynomial. It
210 signals error for a polynomial with at most one term."))
[52]211
[3629]212(defmethod universal-zerop ((self poly))
213 "Return T iff SELF is a zero polynomial."
[3639]214 (null (poly-termlist self)))
[52]215
[3518]216(defgeneric poly-length (self)
[3630]217 (:documentation "Return the number of terms.")
[3518]218 (:method ((self poly))
219 (length (poly-termlist self))))
[52]220
[3689]221(defgeneric scalar-multiply-by (self other)
222 (:documentation "Multiply vector SELF by a scalar OTHER.")
223 (:method ((self poly) other)
[4333]224 (mapc #'(lambda (term) (setf (term-coeff term) (multiply-by (term-coeff term) other)))
[3689]225 (poly-termlist self))
226 self))
227
228(defgeneric scalar-divide-by (self other)
229 (:documentation "Divide vector SELF by a scalar OTHER.")
230 (:method ((self poly) other)
[4333]231 (mapc #'(lambda (term) (setf (term-coeff term) (divide-by (term-coeff term) other)))
[3689]232 (poly-termlist self))
233 self))
234
[4034]235(defmethod unary-inverse :before ((self poly))
[4035]236 "Checks invertibility of a polynomial SELF. To be invertable, the
237polynomial must be an invertible, constant polynomial."
[4034]238 (with-slots (termlist)
[4035]239 self
240 (assert (and (= (length termlist) 1) (zerop (total-degree (car termlist))))
241 nil
242 "To be invertible, the polynomial must have 1 term of total degree 0.")))
[4034]243
244(defmethod unary-inverse ((self poly))
[4035]245 "Returns the unary inverse of a polynomial SELF."
[4034]246 (with-slots (termlist)
247 self
[4035]248 (setf (car termlist) (unary-inverse (car termlist)))
249 self))
[4034]250
[3663]251(defmethod multiply-by ((self poly) (other monom))
[3630]252 "Multiply a polynomial SELF by OTHER."
253 (mapc #'(lambda (term) (multiply-by term other))
254 (poly-termlist self))
255 self)
[2469]256
[3672]257(defmethod multiply-by ((self poly) (other term))
258 "Multiply a polynomial SELF by OTHER."
259 (mapc #'(lambda (term) (multiply-by term other))
260 (poly-termlist self))
261 self)
262
[4427]263#|
[2761]264(defmacro fast-add/subtract (p q order-fn add/subtract-fn uminus-fn)
[2755]265 "Return an expression which will efficiently adds/subtracts two
266polynomials, P and Q. The addition/subtraction of coefficients is
[3878]267performed by calling ADD/SUBTRACT-FN. If UMINUS-FN is supplied, it is
268used to negate the coefficients of Q which do not have a corresponding
269coefficient in P. The code implements an efficient algorithm to add
270two polynomials represented as sorted lists of terms. The code
271destroys both arguments, reusing the terms to build the result."
[3631]272 `(macrolet ((lc (x) `(term-coeff (car ,x))))
[2742]273 (do ((p ,p)
274 (q ,q)
275 r)
276 ((or (endp p) (endp q))
277 ;; NOTE: R contains the result in reverse order. Can it
278 ;; be more efficient to produce the terms in correct order?
[2774]279 (unless (endp q)
[2776]280 ;; Upon subtraction, we must change the sign of
281 ;; all coefficients in q
[2774]282 ,@(when uminus-fn
[2775]283 `((mapc #'(lambda (x) (setf x (funcall ,uminus-fn x))) q)))
[2774]284 (setf r (nreconc r q)))
[3887]285 (unless (endp p)
286 (setf r (nreconc r p)))
287 r)
[2742]288 (multiple-value-bind
289 (greater-p equal-p)
[3632]290 (funcall ,order-fn (car p) (car q))
[2742]291 (cond
292 (greater-p
293 (rotatef (cdr p) r p)
294 )
295 (equal-p
[2766]296 (let ((s (funcall ,add/subtract-fn (lc p) (lc q))))
[2742]297 (cond
[3640]298 ((universal-zerop s)
[2742]299 (setf p (cdr p))
300 )
301 (t
302 (setf (lc p) s)
303 (rotatef (cdr p) r p))))
304 (setf q (cdr q))
305 )
306 (t
[2743]307 ;;Negate the term of Q if UMINUS provided, signallig
308 ;;that we are doing subtraction
[2908]309 ,(when uminus-fn
310 `(setf (lc q) (funcall ,uminus-fn (lc q))))
[3887]311 (rotatef (cdr q) r q))))
312 ;;(format t "P:~A~%" p)
313 ;;(format t "Q:~A~%" q)
314 ;;(format t "R:~A~%" r)
315 )))
[4427]316|#
[3647]317
[4434]318
319
320
[4432]321#|
[4395]322(defun fast-add (p q order-fn add-fn)
[4427]323 "Add two polynomials, P and Q, represented as lists of terms.
324The operation is destructive to both polynomials, as the terms
[4428]325of both lists are combined into the result. The operation does not
326create any new instance of TERM."
[4395]327 (macrolet ((lc (x) `(term-coeff (car ,x))))
328 (do (r)
329 ((or (endp p) (endp q))
330 ;; NOTE: R contains the result in reverse order. Can it
331 ;; be more efficient to produce the terms in correct order?
332 (unless (endp q)
333 (setf r (nreconc r q)))
334 (unless (endp p)
335 (setf r (nreconc r p)))
336 r)
337 (multiple-value-bind
338 (greater-p equal-p)
339 (funcall order-fn (car p) (car q))
340 (cond
341 (greater-p
342 (rotatef (cdr p) r p)
343 )
344 (equal-p
345 (let ((s (funcall add-fn (lc p) (lc q))))
346 (cond
347 ((universal-zerop s)
348 (setf p (cdr p))
349 )
350 (t
351 (setf (lc p) s)
352 (rotatef (cdr p) r p))))
353 (setf q (cdr q))
354 )
355 (t
356 (rotatef (cdr q) r q)))))))
[4434]357|#
[4432]358
359;; Getter/setter of leading coefficient
360(defun lc (x) (term-coeff (car x)))
361(defun (setf lc) (new-value x) (setf (term-coeff (car x)) new-value))
362
[4442]363
[4432]364(defun fast-add (p q order-fn add-fn)
[4434]365 (cond
[4436]366 ((endp p) q)
367 ((endp q) p)
[4434]368 (t
369 (multiple-value-bind
370 (greater-p equal-p)
371 (funcall order-fn (car p) (car q))
372 (cond
[4442]373 (greater-p ; (> (car p) (car q))
[4434]374 (cons (car p) (fast-add (cdr p) q order-fn add-fn))
375 )
[4442]376 (equal-p ; (= (car p)) (car q))
[4434]377 (let ((s (funcall add-fn (lc p) (lc q))))
378 (cond
379 ((universal-zerop s)
380 (fast-add (cdr p) (cdr q) order-fn add-fn))
381 (t
382 ;; Adjust the lc of p
383 (setf (lc p) s)
384 (cons (car p) (fast-add (cdr p) (cdr q) order-fn add-fn))
385 ))))
[4442]386 (t ;(< (car p) (car q))
[4434]387 (cons (car q) (fast-add p (cdr q) order-fn add-fn))
388 ))))))
[4432]389
390
[3884]391#|
[4385]392;; NOTE: The stuff below works, but may not be worth the trouble.
393
[3750]394(defmacro def-add/subtract-method (add/subtract-method-name
[3749]395 uminus-method-name
396 &optional
397 (doc-string nil doc-string-supplied-p))
[3647]398 "This macro avoids code duplication for two similar operations: ADD-TO and SUBTRACT-FROM."
[2749]399 `(defmethod ,add/subtract-method-name ((self poly) (other poly))
[2615]400 ,@(when doc-string-supplied-p `(,doc-string))
[2769]401 ;; Ensure orders are compatible
[3015]402 (change-term-order other self)
[2772]403 (setf (poly-termlist self) (fast-add/subtract
404 (poly-termlist self) (poly-termlist other)
405 (poly-term-order self)
406 #',add/subtract-method-name
407 ,(when uminus-method-name `(function ,uminus-method-name))))
[3748]408 self))
[3908]409
410(eval-when (:load-toplevel :execute)
411
412 (def-add/subtract-method add-to nil
413 "Adds to polynomial SELF another polynomial OTHER.
414This operation destructively modifies both polynomials.
415The result is stored in SELF. This implementation does
416no consing, entirely reusing the sells of SELF and OTHER.")
417
418 (def-add/subtract-method subtract-from unary-minus
419 "Subtracts from polynomial SELF another polynomial OTHER.
420This operation destructively modifies both polynomials.
421The result is stored in SELF. This implementation does
422no consing, entirely reusing the sells of SELF and OTHER.")
423 )
424
[3884]425|#
[2487]426
[3880]427(defmethod unary-minus ((self poly))
428 "Destructively modifies the coefficients of the polynomial SELF,
429by changing their sign."
430 (mapc #'unary-minus (poly-termlist self))
431 self)
432
433(defun add-termlists (p q order-fn)
434 "Destructively adds two termlists P and Q ordered according to ORDER-FN."
[4395]435 (fast-add p q order-fn #'add-to))
[3880]436
[3881]437(defun subtract-termlists (p q order-fn)
[3885]438 "Destructively subtracts two termlists P and Q ordered according to ORDER-FN."
[4395]439 (setf q (mapc #'unary-minus q))
440 (add-termlists p q order-fn))
[3881]441
[4215]442(defmethod add-to ((self poly) (other poly) &aux (other-copy (copy-instance other)))
[3879]443 "Adds to polynomial SELF another polynomial OTHER.
[2610]444This operation destructively modifies both polynomials.
445The result is stored in SELF. This implementation does
[3879]446no consing, entirely reusing the sells of SELF and OTHER."
[4215]447 (change-term-order other-copy self)
[3879]448 (setf (poly-termlist self) (add-termlists
[4215]449 (poly-termlist self) (poly-termlist other-copy)
[3883]450 (poly-term-order self)))
451 self)
[3879]452
[2609]453
[4215]454(defmethod subtract-from ((self poly) (other poly) &aux (other-copy (copy-instance other)))
455 "Subtracts from polynomial SELF another polynomial OTHER.
[2610]456This operation destructively modifies both polynomials.
457The result is stored in SELF. This implementation does
[3879]458no consing, entirely reusing the sells of SELF and OTHER."
[4215]459 (change-term-order other-copy self)
[3879]460 (setf (poly-termlist self) (subtract-termlists
[4215]461 (poly-termlist self) (poly-termlist other-copy)
[3883]462 (poly-term-order self)))
463 self)
[2777]464
[4103]465
[4215]466(defmethod add-to ((self poly) (other term) &aux (other-copy (copy-instance other)))
[4105]467 "Adds to a polynomial SELF a term OTHER. The term OTHER is not
468modified."
[4215]469 (add-to self (change-class other-copy 'poly)))
[4103]470
[4216]471(defmethod subtract-from ((self poly) (other term) &aux (other-copy (copy-instance other)))
[4105]472 "Subtracts from a polynomial SELF a term OTHER. The term OTHER is not
473modified."
[4216]474 (subtract-from self (change-class other-copy 'poly)))
[4103]475
476
[2800]477(defmacro multiply-term-by-termlist-dropping-zeros (term termlist
[2927]478 &optional (reverse-arg-order-P nil))
[2799]479 "Multiplies term TERM by a list of term, TERMLIST.
[2792]480Takes into accound divisors of zero in the ring, by
[2927]481deleting zero terms. Optionally, if REVERSE-ARG-ORDER-P
[2928]482is T, change the order of arguments; this may be important
[2927]483if we extend the package to non-commutative rings."
[2800]484 `(mapcan #'(lambda (other-term)
[3633]485 (let ((prod (multiply
[2923]486 ,@(cond
[2930]487 (reverse-arg-order-p
[2925]488 `(other-term ,term))
489 (t
490 `(,term other-term))))))
[2800]491 (cond
[3633]492 ((universal-zerop prod) nil)
[2800]493 (t (list prod)))))
494 ,termlist))
[2790]495
[2796]496(defun multiply-termlists (p q order-fn)
[3127]497 "A version of polynomial multiplication, operating
498directly on termlists."
[2787]499 (cond
[2917]500 ((or (endp p) (endp q))
501 ;;p or q is 0 (represented by NIL)
502 nil)
[2789]503 ;; If p= p0+p1 and q=q0+q1 then p*q=p0*q0+p0*q1+p1*q
[2787]504 ((endp (cdr p))
[2918]505 (multiply-term-by-termlist-dropping-zeros (car p) q))
506 ((endp (cdr q))
[2919]507 (multiply-term-by-termlist-dropping-zeros (car q) p t))
508 (t
[4101]509 (cons (multiply (car p) (car q))
[2949]510 (add-termlists
511 (multiply-term-by-termlist-dropping-zeros (car p) (cdr q))
512 (multiply-termlists (cdr p) q order-fn)
513 order-fn)))))
[2793]514
[4331]515(defmethod multiply-by ((self poly) (other poly) &aux (other-copy (copy-instance other)))
516 (change-term-order other-copy self)
[2803]517 (setf (poly-termlist self) (multiply-termlists (poly-termlist self)
[4331]518 (poly-termlist other-copy)
[2803]519 (poly-term-order self)))
520 self)
521
[3062]522(defmethod left-tensor-product-by ((self poly) (other monom))
523 (setf (poly-termlist self)
524 (mapcan #'(lambda (term)
525 (let ((prod (left-tensor-product-by term other)))
526 (cond
[3640]527 ((universal-zerop prod) nil)
[3062]528 (t (list prod)))))
529 (poly-termlist self)))
[3249]530 (incf (poly-dimension self) (monom-dimension other))
[3062]531 self)
[3044]532
[3062]533(defmethod right-tensor-product-by ((self poly) (other monom))
534 (setf (poly-termlist self)
535 (mapcan #'(lambda (term)
536 (let ((prod (right-tensor-product-by term other)))
537 (cond
[3640]538 ((universal-zerop prod) nil)
[3062]539 (t (list prod)))))
540 (poly-termlist self)))
[3249]541 (incf (poly-dimension self) (monom-dimension other))
[3062]542 self)
543
544
[3084]545(defun standard-extension (plist &aux (k (length plist)) (i 0))
[2716]546 "Calculate [U1*P1,U2*P2,...,UK*PK], where PLIST=[P1,P2,...,PK]
[3060]547is a list of polynomials. Destructively modifies PLIST elements."
[3061]548 (mapc #'(lambda (poly)
[3085]549 (left-tensor-product-by
550 poly
551 (prog1
552 (make-monom-variable k i)
553 (incf i))))
[3061]554 plist))
[52]555
[3087]556(defun standard-extension-1 (plist
557 &aux
[3096]558 (plist (standard-extension plist))
[3087]559 (nvars (poly-dimension (car plist))))
[3081]560 "Calculate [U1*P1-1,U2*P2-1,...,UK*PK-1], where PLIST=[P1,P2,...,PK].
[3087]561Firstly, new K variables U1, U2, ..., UK, are inserted into each
562polynomial. Subsequently, P1, P2, ..., PK are destructively modified
[3105]563tantamount to replacing PI with UI*PI-1. It assumes that all
[3106]564polynomials have the same dimension, and only the first polynomial
565is examined to determine this dimension."
[3089]566 ;; Implementation note: we use STANDARD-EXTENSION and then subtract
567 ;; 1 from each polynomial; since UI*PI has no constant term,
568 ;; we just need to append the constant term at the end
569 ;; of each termlist.
[3064]570 (flet ((subtract-1 (p)
[3641]571 (poly-append-term p (make-instance 'term :dimension nvars :coeff -1))))
[3083]572 (setf plist (mapc #'subtract-1 plist)))
[3077]573 plist)
[52]574
575
[3107]576(defun standard-sum (plist
577 &aux
578 (plist (standard-extension plist))
579 (nvars (poly-dimension (car plist))))
[3087]580 "Calculate the polynomial U1*P1+U2*P2+...+UK*PK-1, where PLIST=[P1,P2,...,PK].
581Firstly, new K variables, U1, U2, ..., UK, are inserted into each
582polynomial. Subsequently, P1, P2, ..., PK are destructively modified
583tantamount to replacing PI with UI*PI, and the resulting polynomials
[3117]584are added. Finally, 1 is subtracted. It should be noted that the term
585order is not modified, which is equivalent to using a lexicographic
586order on the first K variables."
[3107]587 (flet ((subtract-1 (p)
[3641]588 (poly-append-term p (make-instance 'term :dimension nvars :coeff -1))))
[3108]589 (subtract-1
590 (make-instance
591 'poly
[3115]592 :termlist (apply #'nconc (mapcar #'poly-termlist plist))))))
[52]593
[3655]594(defgeneric s-polynomial (object1 object2)
[3651]595 (:documentation "Yields the S-polynomial of OBJECT1 and OBJECT2.")
596 (:method ((f poly) (g poly))
597 (let* ((lcm (universal-lcm (leading-monomial f) (leading-monomial g)))
598 (mf (divide lcm (leading-monomial f)))
599 (mg (divide lcm (leading-monomial g))))
600 (multiple-value-bind (c cf cg)
[3652]601 (universal-ezgcd (leading-coefficient f) (leading-coefficient g))
[3651]602 (declare (ignore c))
603 (subtract
[4444]604 (multiply f mf cg)
605 (multiply g mg cf))))))
[3651]606
[3676]607(defgeneric poly-content (object)
608 (:documentation "Greatest common divisor of the coefficients of the polynomial object OBJECT.")
[3677]609 (:method ((self poly))
610 (reduce #'universal-gcd
[3679]611 (mapcar #'term-coeff (rest (poly-termlist self)))
612 :initial-value (leading-coefficient self))))
[3676]613
[4334]614(defun poly-primitive-part (self)
615 "Divide polynomial SELF by gcd of its
[3684]616coefficients. Return the resulting polynomial."
[4334]617 (scalar-divide-by self (poly-content self)))
[3682]618
[3700]619(defun poly-insert-variables (self k)
[3697]620 (left-tensor-product-by self (make-instance 'monom :dimension k)))
621
[3698]622(defun saturation-extension (f plist &aux (k (length plist)))
[3708]623 "Calculate [F', U1*P1-1,U2*P2-1,...,UK*PK-1], where
624PLIST=[P1,P2,...,PK] and F' is F with variables U1,U2,...,UK inserted
[3711]625as first K variables. It destructively modifies F and PLIST."
[3700]626 (nconc (mapc #'(lambda (x) (poly-insert-variables x k)) f)
[3699]627 (standard-extension-1 plist)))
[3694]628
[3699]629(defun polysaturation-extension (f plist &aux (k (length plist)))
[3708]630 "Calculate [F', U1*P1+U2*P2+...+UK*PK-1], where PLIST=[P1,P2,...,PK]
631and F' is F with variables U1,U2,...,UK inserted as first K
[3711]632variables. It destructively modifies F and PLIST."
[3700]633 (nconc (mapc #'(lambda (x) (poly-insert-variables x k)) f)
[3703]634 (list (standard-sum plist))))
[3694]635
[3691]636(defun saturation-extension-1 (f p)
[3712]637 "Given family of polynomials F and a polynomial P, calculate [F',
638U*P-1], where F' is F with variable inserted as the first variable. It
639destructively modifies F and P."
[3693]640 (polysaturation-extension f (list p)))
[3713]641
[4305]642(defmethod multiply-by ((self poly) (other ring))
[4306]643 (scalar-multiply-by self other))
[4068]644
[3781]645(defun make-poly-variable (nvars pos &optional (power 1))
646 (change-class (make-monom-variable nvars pos power) 'poly))
[3736]647
[3821]648(defun make-poly-constant (nvars coeff)
649 (change-class (make-term-constant nvars coeff) 'poly))
650
[3713]651(defgeneric universal-expt (x y)
[3721]652 (:documentation "Raises X to power Y.")
[3713]653 (:method ((x number) (y integer)) (expt x y))
654 (:method ((x t) (y integer))
655 (declare (type fixnum y))
656 (cond
657 ((minusp y) (error "universal-expt: Negative exponent."))
658 ((universal-zerop x) (if (zerop y) 1))
659 (t
660 (do ((k 1 (ash k 1))
661 (q x (multiply q q)) ;keep squaring
[4119]662 (p (make-unit-for x) (if (not (zerop (logand k y))) (multiply p q) p)))
[3713]663 ((> k y) p)
[3778]664 (declare (fixnum k)))))))
665
666(defgeneric poly-p (object)
667 (:documentation "Checks if an object is a polynomial.")
[3779]668 (:method ((self poly)) t)
[3778]669 (:method ((self t)) nil))
[3830]670
[4021]671(defmethod ->sexp :before ((self poly) &optional vars)
[3905]672 "Ensures that the number of variables in VARS maches the polynomial dimension of the
673polynomial SELF."
[4027]674 (with-slots (dimension)
675 self
676 (assert (= (length vars) dimension)
[4028]677 nil
[4027]678 "Number of variables ~S does not match the dimension ~S"
679 vars dimension)))
[3904]680
[4021]681(defmethod ->sexp ((self poly) &optional vars)
[3905]682 "Converts a polynomial SELF to a sexp."
[4396]683 (let ((m (mapcar #'(lambda (trm) (->sexp trm vars))
[3830]684 (poly-termlist self))))
[4053]685 (cond ((endp m) 0)
[4036]686 ((endp (cdr m)) (car m))
687 (t (cons '+ m)))))
[3899]688
[4363]689(defconstant +list-marker+ :[
[3903]690 "A sexp with this head is considered a list of polynomials.")
691
[4021]692(defmethod ->sexp ((self cons) &optional vars)
[3906]693 (assert (eql (car self) +list-marker+))
[4021]694 (cons +list-marker+ (mapcar #'(lambda (p) (->sexp p vars)) (cdr self))))
[3906]695
[4277]696(defmethod make-zero-for ((self poly))
697 (make-instance 'poly :dimension (poly-dimension self)))
[4053]698
[4277]699(defmethod make-unit-for ((self poly))
700 (make-poly-constant (poly-dimension self) 1))
[4057]701
[4068]702(defgeneric poly-reverse (self)
[4061]703 (:documentation "Reverse the order of terms in a polynomial SELF.")
[4057]704 (:method ((self poly))
705 (with-slots (termlist)
706 self
[4060]707 (setf termlist (nreverse termlist)))
[4057]708 self))
709
710
[4053]711
Note: See TracBrowser for help on using the repository browser.