close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/polynomial.lisp@ 4432

Last change on this file since 4432 was 4432, checked in by Marek Rychlik, 8 years ago

* empty log message *

File size: 24.1 KB
RevLine 
[3400]1;;----------------------------------------------------------------
[1201]2;;; -*- Mode: Lisp -*-
[77]3;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
4;;;
5;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
6;;;
7;;; This program is free software; you can redistribute it and/or modify
8;;; it under the terms of the GNU General Public License as published by
9;;; the Free Software Foundation; either version 2 of the License, or
10;;; (at your option) any later version.
11;;;
12;;; This program is distributed in the hope that it will be useful,
13;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
14;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15;;; GNU General Public License for more details.
16;;;
17;;; You should have received a copy of the GNU General Public License
18;;; along with this program; if not, write to the Free Software
19;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20;;;
21;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
22
[431]23(defpackage "POLYNOMIAL"
[4325]24 (:use :cl :utils :monom :copy :ring)
[2596]25 (:export "POLY"
[3270]26 "POLY-DIMENSION"
[2596]27 "POLY-TERMLIST"
[3016]28 "POLY-TERM-ORDER"
[3509]29 "POLY-INSERT-TERM"
[3690]30 "SCALAR-MULTIPLY-BY"
31 "SCALAR-DIVIDE-BY"
[3642]32 "LEADING-TERM"
[3657]33 "LEADING-MONOMIAL"
[3642]34 "LEADING-COEFFICIENT"
[3657]35 "SECOND-LEADING-TERM"
36 "SECOND-LEADING-MONOMIAL"
37 "SECOND-LEADING-COEFFICIENT"
[3642]38 "ADD-TO"
[3646]39 "ADD"
[3642]40 "SUBTRACT-FROM"
[3646]41 "SUBTRACT"
[3071]42 "CHANGE-TERM-ORDER"
[3099]43 "STANDARD-EXTENSION"
[3101]44 "STANDARD-EXTENSION-1"
[3109]45 "STANDARD-SUM"
[3094]46 "SATURATION-EXTENSION"
[3655]47 "ALIST->POLY"
[3852]48 "->INFIX"
[3655]49 "UNIVERSAL-EZGCD"
[3678]50 "S-POLYNOMIAL"
[3686]51 "POLY-CONTENT"
[3692]52 "POLY-PRIMITIVE-PART"
[3714]53 "SATURATION-EXTENSION-1"
[3737]54 "MAKE-POLY-VARIABLE"
[3821]55 "MAKE-POLY-CONSTANT"
[4053]56 "MAKE-ZERO-FOR"
57 "MAKE-UNIT-FOR"
[3778]58 "UNIVERSAL-EXPT"
[3969]59 "UNIVERSAL-EQUALP"
[4191]60 "UNIVERSAL-ZEROP"
[3969]61 "POLY-LENGTH"
[4062]62 "POLY-REVERSE"
[3900]63 "POLY-P"
[3901]64 "+LIST-MARKER+"
[4366]65 "POLY-EVAL"
66 "*COEFFICIENT-CLASS*")
[3489]67 (:documentation "Implements polynomials. A polynomial is essentially
68a mapping of monomials of the same degree to coefficients. The
69momomials are ordered according to a monomial order."))
[143]70
[431]71(in-package :polynomial)
72
[1927]73(proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0)))
[52]74
[4347]75(defclass poly (ring)
[3253]76 ((dimension :initform nil
[3250]77 :initarg :dimension
78 :accessor poly-dimension
[3242]79 :documentation "Shared dimension of all terms, the number of variables")
[3250]80 (termlist :initform nil :initarg :termlist :accessor poly-termlist
[3619]81 :documentation "List of terms.")
[3250]82 (order :initform #'lex> :initarg :order :accessor poly-term-order
[2697]83 :documentation "Monomial/term order."))
[3262]84 (:default-initargs :dimension nil :termlist nil :order #'lex>)
[2695]85 (:documentation "A polynomial with a list of terms TERMLIST, ordered
[2696]86according to term order ORDER, which defaults to LEX>."))
[2442]87
[2471]88(defmethod print-object ((self poly) stream)
[3241]89 (print-unreadable-object (self stream :type t :identity t)
[3243]90 (with-accessors ((dimension poly-dimension)
91 (termlist poly-termlist)
92 (order poly-term-order))
[3237]93 self
[3244]94 (format stream "DIMENSION=~A TERMLIST=~A ORDER=~A"
95 dimension termlist order))))
[2469]96
[4114]97(defmethod copy-instance :around ((object poly) &rest initargs &key &allow-other-keys)
[4115]98 "Returns a deep copy of the polynomial POLY, by copying the TERMLIST and its terms."
[4114]99 (declare (ignore object initargs))
100 (let ((copy (call-next-method)))
101 (with-slots (termlist)
102 copy
103 (setf termlist (mapcar #'copy-instance termlist)))
104 copy))
105
106
[3015]107(defgeneric change-term-order (self other)
[3012]108 (:documentation "Change term order of SELF to the term order of OTHER.")
[3010]109 (:method ((self poly) (other poly))
110 (unless (eq (poly-term-order self) (poly-term-order other))
[3620]111 (setf (poly-termlist self) (sort (poly-termlist self) (poly-term-order other))
[3010]112 (poly-term-order self) (poly-term-order other)))
[3012]113 self))
[3010]114
[3621]115(defgeneric poly-insert-term (self term)
[3622]116 (:documentation "Insert a term TERM into SELF before all other
[4329]117terms. Order is not enforced.")
[3621]118 (:method ((self poly) (term term))
[3510]119 (cond ((null (poly-dimension self))
[3621]120 (setf (poly-dimension self) (monom-dimension term)))
121 (t (assert (= (poly-dimension self) (monom-dimension term)))))
122 (push term (poly-termlist self))
[3510]123 self))
124
[3622]125(defgeneric poly-append-term (self term)
126 (:documentation "Append a term TERM to SELF after all other terms. Order is not enforced.")
127 (:method ((self poly) (term term))
[3510]128 (cond ((null (poly-dimension self))
[3622]129 (setf (poly-dimension self) (monom-dimension term)))
130 (t (assert (= (poly-dimension self) (monom-dimension term)))))
131 (setf (cdr (last (poly-termlist self))) (list term))
[3510]132 self))
133
[3095]134(defun alist->poly (alist &aux (poly (make-instance 'poly)))
[3126]135 "It reads polynomial from an alist formatted as ( ... (exponents . coeff) ...).
136It can be used to enter simple polynomials by hand, e.g the polynomial
137in two variables, X and Y, given in standard notation as:
138
139 3*X^2*Y^3+2*Y+7
140
141can be entered as
142(ALIST->POLY '(((2 3) . 3) ((0 1) . 2) ((0 0) . 7))).
143
144NOTE: The primary use is for low-level debugging of the package."
[3099]145 (dolist (x alist poly)
[3705]146 (poly-insert-term poly (make-instance 'term :exponents (car x) :coeff (cdr x)))))
[3092]147
[3877]148(defmethod update-instance-for-different-class :after ((old term) (new poly) &key)
[3786]149 "Converts OLD of class TERM to a NEW of class POLY, by making it into a 1-element TERMLIST."
[3401]150 (reinitialize-instance new
151 :dimension (monom-dimension old)
[3786]152 :termlist (list old)))
[3796]153
[3877]154(defmethod update-instance-for-different-class :after ((old monom) (new poly) &key)
[3796]155 "Converts OLD of class MONOM to a NEW of class POLY, by making it into a 1-element TERMLIST."
156 (reinitialize-instance new
157 :dimension (monom-dimension old)
[3797]158 :termlist (list (change-class old 'term))))
[3403]159
[3624]160(defmethod universal-equalp ((self poly) (other poly))
161 "Implements equality of polynomials."
162 (and (eql (poly-dimension self) (poly-dimension other))
163 (every #'universal-equalp (poly-termlist self) (poly-termlist other))
164 (eq (poly-term-order self) (poly-term-order other))))
[2650]165
[3624]166(defgeneric leading-term (object)
[2442]167 (:method ((self poly))
[2525]168 (car (poly-termlist self)))
169 (:documentation "The leading term of a polynomial, or NIL for zero polynomial."))
[52]170
[3625]171(defgeneric second-leading-term (object)
[2442]172 (:method ((self poly))
[2525]173 (cadar (poly-termlist self)))
174 (:documentation "The second leading term of a polynomial, or NIL for a polynomial with at most one term."))
[52]175
[3656]176(defgeneric leading-monomial (object)
177 (:method ((self poly))
178 (change-class (copy-instance (leading-term self)) 'monom))
179 (:documentation "The leading monomial of a polynomial, or NIL for zero polynomial."))
180
181(defgeneric second-leading-monomial (object)
182 (:method ((self poly))
183 (change-class (copy-instance (second-leading-term self)) 'monom))
184 (:documentation "The leading monomial of a polynomial, or NIL for zero polynomial."))
185
[3625]186(defgeneric leading-coefficient (object)
[2442]187 (:method ((self poly))
[3642]188 (term-coeff (leading-term self)))
[2545]189 (:documentation "The leading coefficient of a polynomial. It signals error for a zero polynomial."))
[52]190
[2442]191(defgeneric second-leading-coefficient (object)
192 (:method ((self poly))
[3645]193 (term-coeff (second-leading-term self)))
[2906]194 (:documentation "The second leading coefficient of a polynomial. It
195 signals error for a polynomial with at most one term."))
[52]196
[3629]197(defmethod universal-zerop ((self poly))
198 "Return T iff SELF is a zero polynomial."
[3639]199 (null (poly-termlist self)))
[52]200
[3518]201(defgeneric poly-length (self)
[3630]202 (:documentation "Return the number of terms.")
[3518]203 (:method ((self poly))
204 (length (poly-termlist self))))
[52]205
[3689]206(defgeneric scalar-multiply-by (self other)
207 (:documentation "Multiply vector SELF by a scalar OTHER.")
208 (:method ((self poly) other)
[4333]209 (mapc #'(lambda (term) (setf (term-coeff term) (multiply-by (term-coeff term) other)))
[3689]210 (poly-termlist self))
211 self))
212
213(defgeneric scalar-divide-by (self other)
214 (:documentation "Divide vector SELF by a scalar OTHER.")
215 (:method ((self poly) other)
[4333]216 (mapc #'(lambda (term) (setf (term-coeff term) (divide-by (term-coeff term) other)))
[3689]217 (poly-termlist self))
218 self))
219
[4034]220(defmethod unary-inverse :before ((self poly))
[4035]221 "Checks invertibility of a polynomial SELF. To be invertable, the
222polynomial must be an invertible, constant polynomial."
[4034]223 (with-slots (termlist)
[4035]224 self
225 (assert (and (= (length termlist) 1) (zerop (total-degree (car termlist))))
226 nil
227 "To be invertible, the polynomial must have 1 term of total degree 0.")))
[4034]228
229(defmethod unary-inverse ((self poly))
[4035]230 "Returns the unary inverse of a polynomial SELF."
[4034]231 (with-slots (termlist)
232 self
[4035]233 (setf (car termlist) (unary-inverse (car termlist)))
234 self))
[4034]235
[3663]236(defmethod multiply-by ((self poly) (other monom))
[3630]237 "Multiply a polynomial SELF by OTHER."
238 (mapc #'(lambda (term) (multiply-by term other))
239 (poly-termlist self))
240 self)
[2469]241
[3672]242(defmethod multiply-by ((self poly) (other term))
243 "Multiply a polynomial SELF by OTHER."
244 (mapc #'(lambda (term) (multiply-by term other))
245 (poly-termlist self))
246 self)
247
[4427]248#|
[2761]249(defmacro fast-add/subtract (p q order-fn add/subtract-fn uminus-fn)
[2755]250 "Return an expression which will efficiently adds/subtracts two
251polynomials, P and Q. The addition/subtraction of coefficients is
[3878]252performed by calling ADD/SUBTRACT-FN. If UMINUS-FN is supplied, it is
253used to negate the coefficients of Q which do not have a corresponding
254coefficient in P. The code implements an efficient algorithm to add
255two polynomials represented as sorted lists of terms. The code
256destroys both arguments, reusing the terms to build the result."
[3631]257 `(macrolet ((lc (x) `(term-coeff (car ,x))))
[2742]258 (do ((p ,p)
259 (q ,q)
260 r)
261 ((or (endp p) (endp q))
262 ;; NOTE: R contains the result in reverse order. Can it
263 ;; be more efficient to produce the terms in correct order?
[2774]264 (unless (endp q)
[2776]265 ;; Upon subtraction, we must change the sign of
266 ;; all coefficients in q
[2774]267 ,@(when uminus-fn
[2775]268 `((mapc #'(lambda (x) (setf x (funcall ,uminus-fn x))) q)))
[2774]269 (setf r (nreconc r q)))
[3887]270 (unless (endp p)
271 (setf r (nreconc r p)))
272 r)
[2742]273 (multiple-value-bind
274 (greater-p equal-p)
[3632]275 (funcall ,order-fn (car p) (car q))
[2742]276 (cond
277 (greater-p
278 (rotatef (cdr p) r p)
279 )
280 (equal-p
[2766]281 (let ((s (funcall ,add/subtract-fn (lc p) (lc q))))
[2742]282 (cond
[3640]283 ((universal-zerop s)
[2742]284 (setf p (cdr p))
285 )
286 (t
287 (setf (lc p) s)
288 (rotatef (cdr p) r p))))
289 (setf q (cdr q))
290 )
291 (t
[2743]292 ;;Negate the term of Q if UMINUS provided, signallig
293 ;;that we are doing subtraction
[2908]294 ,(when uminus-fn
295 `(setf (lc q) (funcall ,uminus-fn (lc q))))
[3887]296 (rotatef (cdr q) r q))))
297 ;;(format t "P:~A~%" p)
298 ;;(format t "Q:~A~%" q)
299 ;;(format t "R:~A~%" r)
300 )))
[4427]301|#
[3647]302
[4432]303#|
[4395]304(defun fast-add (p q order-fn add-fn)
[4427]305 "Add two polynomials, P and Q, represented as lists of terms.
306The operation is destructive to both polynomials, as the terms
[4428]307of both lists are combined into the result. The operation does not
308create any new instance of TERM."
[4395]309 (macrolet ((lc (x) `(term-coeff (car ,x))))
310 (do (r)
311 ((or (endp p) (endp q))
312 ;; NOTE: R contains the result in reverse order. Can it
313 ;; be more efficient to produce the terms in correct order?
314 (unless (endp q)
315 (setf r (nreconc r q)))
316 (unless (endp p)
317 (setf r (nreconc r p)))
318 r)
319 (multiple-value-bind
320 (greater-p equal-p)
321 (funcall order-fn (car p) (car q))
322 (cond
323 (greater-p
324 (rotatef (cdr p) r p)
325 )
326 (equal-p
327 (let ((s (funcall add-fn (lc p) (lc q))))
328 (cond
329 ((universal-zerop s)
330 (setf p (cdr p))
331 )
332 (t
333 (setf (lc p) s)
334 (rotatef (cdr p) r p))))
335 (setf q (cdr q))
336 )
337 (t
338 (rotatef (cdr q) r q)))))))
[4432]339|#
340
341
342;; Getter/setter of leading coefficient
343(defun lc (x) (term-coeff (car x)))
344(defun (setf lc) (new-value x) (setf (term-coeff (car x)) new-value))
345
346(defun fast-add (p q order-fn add-fn)
347 ;; Requirement: (car p) > (car q)
348 ;; (consp (cdr p))
349 (do ((h p))
350 ((endp q) p)
351 (multiple-value-bind
352 (greater-p equal-p)
353 (funcall order-fn (cadr h) (car q))
354 (cond
355 (greater-p ; (> (cadr h) (car q))
356 (setf h (cdr h))
357 )
358 (equal-p ; (= (cadr h)) (car q))
359 (let ((s (funcall add-fn (lc h) (lc q))))
360 (cond
361 ((universal-zerop s)
362 (setf h (cdr h)
363 q (cdr q)))
364 (t
365 ;; Adjust the lc of p
366 (setf (lc h) s
367 h (cdr h)
368 q (cdr q))))))
369 (t ;(< (cadr h) (car q))
370 (let ((tmp (cdr q)))
371 (setf (cdr q) (cdr p)
372 (cdr h) q
373 q tmp)))))))
374
375
376
[3884]377#|
[4385]378;; NOTE: The stuff below works, but may not be worth the trouble.
379
[3750]380(defmacro def-add/subtract-method (add/subtract-method-name
[3749]381 uminus-method-name
382 &optional
383 (doc-string nil doc-string-supplied-p))
[3647]384 "This macro avoids code duplication for two similar operations: ADD-TO and SUBTRACT-FROM."
[2749]385 `(defmethod ,add/subtract-method-name ((self poly) (other poly))
[2615]386 ,@(when doc-string-supplied-p `(,doc-string))
[2769]387 ;; Ensure orders are compatible
[3015]388 (change-term-order other self)
[2772]389 (setf (poly-termlist self) (fast-add/subtract
390 (poly-termlist self) (poly-termlist other)
391 (poly-term-order self)
392 #',add/subtract-method-name
393 ,(when uminus-method-name `(function ,uminus-method-name))))
[3748]394 self))
[3908]395
396(eval-when (:load-toplevel :execute)
397
398 (def-add/subtract-method add-to nil
399 "Adds to polynomial SELF another polynomial OTHER.
400This operation destructively modifies both polynomials.
401The result is stored in SELF. This implementation does
402no consing, entirely reusing the sells of SELF and OTHER.")
403
404 (def-add/subtract-method subtract-from unary-minus
405 "Subtracts from polynomial SELF another polynomial OTHER.
406This operation destructively modifies both polynomials.
407The result is stored in SELF. This implementation does
408no consing, entirely reusing the sells of SELF and OTHER.")
409 )
410
[3884]411|#
[2487]412
[3880]413(defmethod unary-minus ((self poly))
414 "Destructively modifies the coefficients of the polynomial SELF,
415by changing their sign."
416 (mapc #'unary-minus (poly-termlist self))
417 self)
418
419(defun add-termlists (p q order-fn)
420 "Destructively adds two termlists P and Q ordered according to ORDER-FN."
[4395]421 (fast-add p q order-fn #'add-to))
[3880]422
[3881]423(defun subtract-termlists (p q order-fn)
[3885]424 "Destructively subtracts two termlists P and Q ordered according to ORDER-FN."
[4395]425 (setf q (mapc #'unary-minus q))
426 (add-termlists p q order-fn))
[3881]427
[4215]428(defmethod add-to ((self poly) (other poly) &aux (other-copy (copy-instance other)))
[3879]429 "Adds to polynomial SELF another polynomial OTHER.
[2610]430This operation destructively modifies both polynomials.
431The result is stored in SELF. This implementation does
[3879]432no consing, entirely reusing the sells of SELF and OTHER."
[4215]433 (change-term-order other-copy self)
[3879]434 (setf (poly-termlist self) (add-termlists
[4215]435 (poly-termlist self) (poly-termlist other-copy)
[3883]436 (poly-term-order self)))
437 self)
[3879]438
[2609]439
[4215]440(defmethod subtract-from ((self poly) (other poly) &aux (other-copy (copy-instance other)))
441 "Subtracts from polynomial SELF another polynomial OTHER.
[2610]442This operation destructively modifies both polynomials.
443The result is stored in SELF. This implementation does
[3879]444no consing, entirely reusing the sells of SELF and OTHER."
[4215]445 (change-term-order other-copy self)
[3879]446 (setf (poly-termlist self) (subtract-termlists
[4215]447 (poly-termlist self) (poly-termlist other-copy)
[3883]448 (poly-term-order self)))
449 self)
[2777]450
[4103]451
[4215]452(defmethod add-to ((self poly) (other term) &aux (other-copy (copy-instance other)))
[4105]453 "Adds to a polynomial SELF a term OTHER. The term OTHER is not
454modified."
[4215]455 (add-to self (change-class other-copy 'poly)))
[4103]456
[4216]457(defmethod subtract-from ((self poly) (other term) &aux (other-copy (copy-instance other)))
[4105]458 "Subtracts from a polynomial SELF a term OTHER. The term OTHER is not
459modified."
[4216]460 (subtract-from self (change-class other-copy 'poly)))
[4103]461
462
[2800]463(defmacro multiply-term-by-termlist-dropping-zeros (term termlist
[2927]464 &optional (reverse-arg-order-P nil))
[2799]465 "Multiplies term TERM by a list of term, TERMLIST.
[2792]466Takes into accound divisors of zero in the ring, by
[2927]467deleting zero terms. Optionally, if REVERSE-ARG-ORDER-P
[2928]468is T, change the order of arguments; this may be important
[2927]469if we extend the package to non-commutative rings."
[2800]470 `(mapcan #'(lambda (other-term)
[3633]471 (let ((prod (multiply
[2923]472 ,@(cond
[2930]473 (reverse-arg-order-p
[2925]474 `(other-term ,term))
475 (t
476 `(,term other-term))))))
[2800]477 (cond
[3633]478 ((universal-zerop prod) nil)
[2800]479 (t (list prod)))))
480 ,termlist))
[2790]481
[2796]482(defun multiply-termlists (p q order-fn)
[3127]483 "A version of polynomial multiplication, operating
484directly on termlists."
[2787]485 (cond
[2917]486 ((or (endp p) (endp q))
487 ;;p or q is 0 (represented by NIL)
488 nil)
[2789]489 ;; If p= p0+p1 and q=q0+q1 then p*q=p0*q0+p0*q1+p1*q
[2787]490 ((endp (cdr p))
[2918]491 (multiply-term-by-termlist-dropping-zeros (car p) q))
492 ((endp (cdr q))
[2919]493 (multiply-term-by-termlist-dropping-zeros (car q) p t))
494 (t
[4101]495 (cons (multiply (car p) (car q))
[2949]496 (add-termlists
497 (multiply-term-by-termlist-dropping-zeros (car p) (cdr q))
498 (multiply-termlists (cdr p) q order-fn)
499 order-fn)))))
[2793]500
[4331]501(defmethod multiply-by ((self poly) (other poly) &aux (other-copy (copy-instance other)))
502 (change-term-order other-copy self)
[2803]503 (setf (poly-termlist self) (multiply-termlists (poly-termlist self)
[4331]504 (poly-termlist other-copy)
[2803]505 (poly-term-order self)))
506 self)
507
[3062]508(defmethod left-tensor-product-by ((self poly) (other monom))
509 (setf (poly-termlist self)
510 (mapcan #'(lambda (term)
511 (let ((prod (left-tensor-product-by term other)))
512 (cond
[3640]513 ((universal-zerop prod) nil)
[3062]514 (t (list prod)))))
515 (poly-termlist self)))
[3249]516 (incf (poly-dimension self) (monom-dimension other))
[3062]517 self)
[3044]518
[3062]519(defmethod right-tensor-product-by ((self poly) (other monom))
520 (setf (poly-termlist self)
521 (mapcan #'(lambda (term)
522 (let ((prod (right-tensor-product-by term other)))
523 (cond
[3640]524 ((universal-zerop prod) nil)
[3062]525 (t (list prod)))))
526 (poly-termlist self)))
[3249]527 (incf (poly-dimension self) (monom-dimension other))
[3062]528 self)
529
530
[3084]531(defun standard-extension (plist &aux (k (length plist)) (i 0))
[2716]532 "Calculate [U1*P1,U2*P2,...,UK*PK], where PLIST=[P1,P2,...,PK]
[3060]533is a list of polynomials. Destructively modifies PLIST elements."
[3061]534 (mapc #'(lambda (poly)
[3085]535 (left-tensor-product-by
536 poly
537 (prog1
538 (make-monom-variable k i)
539 (incf i))))
[3061]540 plist))
[52]541
[3087]542(defun standard-extension-1 (plist
543 &aux
[3096]544 (plist (standard-extension plist))
[3087]545 (nvars (poly-dimension (car plist))))
[3081]546 "Calculate [U1*P1-1,U2*P2-1,...,UK*PK-1], where PLIST=[P1,P2,...,PK].
[3087]547Firstly, new K variables U1, U2, ..., UK, are inserted into each
548polynomial. Subsequently, P1, P2, ..., PK are destructively modified
[3105]549tantamount to replacing PI with UI*PI-1. It assumes that all
[3106]550polynomials have the same dimension, and only the first polynomial
551is examined to determine this dimension."
[3089]552 ;; Implementation note: we use STANDARD-EXTENSION and then subtract
553 ;; 1 from each polynomial; since UI*PI has no constant term,
554 ;; we just need to append the constant term at the end
555 ;; of each termlist.
[3064]556 (flet ((subtract-1 (p)
[3641]557 (poly-append-term p (make-instance 'term :dimension nvars :coeff -1))))
[3083]558 (setf plist (mapc #'subtract-1 plist)))
[3077]559 plist)
[52]560
561
[3107]562(defun standard-sum (plist
563 &aux
564 (plist (standard-extension plist))
565 (nvars (poly-dimension (car plist))))
[3087]566 "Calculate the polynomial U1*P1+U2*P2+...+UK*PK-1, where PLIST=[P1,P2,...,PK].
567Firstly, new K variables, U1, U2, ..., UK, are inserted into each
568polynomial. Subsequently, P1, P2, ..., PK are destructively modified
569tantamount to replacing PI with UI*PI, and the resulting polynomials
[3117]570are added. Finally, 1 is subtracted. It should be noted that the term
571order is not modified, which is equivalent to using a lexicographic
572order on the first K variables."
[3107]573 (flet ((subtract-1 (p)
[3641]574 (poly-append-term p (make-instance 'term :dimension nvars :coeff -1))))
[3108]575 (subtract-1
576 (make-instance
577 'poly
[3115]578 :termlist (apply #'nconc (mapcar #'poly-termlist plist))))))
[52]579
[3655]580(defgeneric s-polynomial (object1 object2)
[3651]581 (:documentation "Yields the S-polynomial of OBJECT1 and OBJECT2.")
582 (:method ((f poly) (g poly))
583 (let* ((lcm (universal-lcm (leading-monomial f) (leading-monomial g)))
584 (mf (divide lcm (leading-monomial f)))
585 (mg (divide lcm (leading-monomial g))))
586 (multiple-value-bind (c cf cg)
[3652]587 (universal-ezgcd (leading-coefficient f) (leading-coefficient g))
[3651]588 (declare (ignore c))
589 (subtract
[4111]590 (multiply f (change-class mf 'term :coeff cg))
591 (multiply g (change-class mg 'term :coeff cf)))))))
[3651]592
[3676]593(defgeneric poly-content (object)
594 (:documentation "Greatest common divisor of the coefficients of the polynomial object OBJECT.")
[3677]595 (:method ((self poly))
596 (reduce #'universal-gcd
[3679]597 (mapcar #'term-coeff (rest (poly-termlist self)))
598 :initial-value (leading-coefficient self))))
[3676]599
[4334]600(defun poly-primitive-part (self)
601 "Divide polynomial SELF by gcd of its
[3684]602coefficients. Return the resulting polynomial."
[4334]603 (scalar-divide-by self (poly-content self)))
[3682]604
[3700]605(defun poly-insert-variables (self k)
[3697]606 (left-tensor-product-by self (make-instance 'monom :dimension k)))
607
[3698]608(defun saturation-extension (f plist &aux (k (length plist)))
[3708]609 "Calculate [F', U1*P1-1,U2*P2-1,...,UK*PK-1], where
610PLIST=[P1,P2,...,PK] and F' is F with variables U1,U2,...,UK inserted
[3711]611as first K variables. It destructively modifies F and PLIST."
[3700]612 (nconc (mapc #'(lambda (x) (poly-insert-variables x k)) f)
[3699]613 (standard-extension-1 plist)))
[3694]614
[3699]615(defun polysaturation-extension (f plist &aux (k (length plist)))
[3708]616 "Calculate [F', U1*P1+U2*P2+...+UK*PK-1], where PLIST=[P1,P2,...,PK]
617and F' is F with variables U1,U2,...,UK inserted as first K
[3711]618variables. It destructively modifies F and PLIST."
[3700]619 (nconc (mapc #'(lambda (x) (poly-insert-variables x k)) f)
[3703]620 (list (standard-sum plist))))
[3694]621
[3691]622(defun saturation-extension-1 (f p)
[3712]623 "Given family of polynomials F and a polynomial P, calculate [F',
624U*P-1], where F' is F with variable inserted as the first variable. It
625destructively modifies F and P."
[3693]626 (polysaturation-extension f (list p)))
[3713]627
[4305]628(defmethod multiply-by ((self poly) (other ring))
[4306]629 (scalar-multiply-by self other))
[4068]630
[3781]631(defun make-poly-variable (nvars pos &optional (power 1))
632 (change-class (make-monom-variable nvars pos power) 'poly))
[3736]633
[3821]634(defun make-poly-constant (nvars coeff)
635 (change-class (make-term-constant nvars coeff) 'poly))
636
[3713]637(defgeneric universal-expt (x y)
[3721]638 (:documentation "Raises X to power Y.")
[3713]639 (:method ((x number) (y integer)) (expt x y))
640 (:method ((x t) (y integer))
641 (declare (type fixnum y))
642 (cond
643 ((minusp y) (error "universal-expt: Negative exponent."))
644 ((universal-zerop x) (if (zerop y) 1))
645 (t
646 (do ((k 1 (ash k 1))
647 (q x (multiply q q)) ;keep squaring
[4119]648 (p (make-unit-for x) (if (not (zerop (logand k y))) (multiply p q) p)))
[3713]649 ((> k y) p)
[3778]650 (declare (fixnum k)))))))
651
652(defgeneric poly-p (object)
653 (:documentation "Checks if an object is a polynomial.")
[3779]654 (:method ((self poly)) t)
[3778]655 (:method ((self t)) nil))
[3830]656
[4021]657(defmethod ->sexp :before ((self poly) &optional vars)
[3905]658 "Ensures that the number of variables in VARS maches the polynomial dimension of the
659polynomial SELF."
[4027]660 (with-slots (dimension)
661 self
662 (assert (= (length vars) dimension)
[4028]663 nil
[4027]664 "Number of variables ~S does not match the dimension ~S"
665 vars dimension)))
[3904]666
[4021]667(defmethod ->sexp ((self poly) &optional vars)
[3905]668 "Converts a polynomial SELF to a sexp."
[4396]669 (let ((m (mapcar #'(lambda (trm) (->sexp trm vars))
[3830]670 (poly-termlist self))))
[4053]671 (cond ((endp m) 0)
[4036]672 ((endp (cdr m)) (car m))
673 (t (cons '+ m)))))
[3899]674
[4363]675(defconstant +list-marker+ :[
[3903]676 "A sexp with this head is considered a list of polynomials.")
677
[4021]678(defmethod ->sexp ((self cons) &optional vars)
[3906]679 (assert (eql (car self) +list-marker+))
[4021]680 (cons +list-marker+ (mapcar #'(lambda (p) (->sexp p vars)) (cdr self))))
[3906]681
[4277]682(defmethod make-zero-for ((self poly))
683 (make-instance 'poly :dimension (poly-dimension self)))
[4053]684
[4277]685(defmethod make-unit-for ((self poly))
686 (make-poly-constant (poly-dimension self) 1))
[4057]687
[4068]688(defgeneric poly-reverse (self)
[4061]689 (:documentation "Reverse the order of terms in a polynomial SELF.")
[4057]690 (:method ((self poly))
691 (with-slots (termlist)
692 self
[4060]693 (setf termlist (nreverse termlist)))
[4057]694 self))
695
696
[4053]697
Note: See TracBrowser for help on using the repository browser.