close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/polynomial.lisp@ 4110

Last change on this file since 4110 was 4105, checked in by Marek Rychlik, 9 years ago

* empty log message *

File size: 25.6 KB
RevLine 
[3400]1;;----------------------------------------------------------------
[1201]2;;; -*- Mode: Lisp -*-
[77]3;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
4;;;
5;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
6;;;
7;;; This program is free software; you can redistribute it and/or modify
8;;; it under the terms of the GNU General Public License as published by
9;;; the Free Software Foundation; either version 2 of the License, or
10;;; (at your option) any later version.
11;;;
12;;; This program is distributed in the hope that it will be useful,
13;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
14;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15;;; GNU General Public License for more details.
16;;;
17;;; You should have received a copy of the GNU General Public License
18;;; along with this program; if not, write to the Free Software
19;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20;;;
21;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
22
[431]23(defpackage "POLYNOMIAL"
[3643]24 (:use :cl :utils :monom :copy)
[2596]25 (:export "POLY"
[3270]26 "POLY-DIMENSION"
[2596]27 "POLY-TERMLIST"
[3016]28 "POLY-TERM-ORDER"
[3509]29 "POLY-INSERT-TERM"
[3690]30 "SCALAR-MULTIPLY-BY"
31 "SCALAR-DIVIDE-BY"
[3642]32 "LEADING-TERM"
[3657]33 "LEADING-MONOMIAL"
[3642]34 "LEADING-COEFFICIENT"
[3657]35 "SECOND-LEADING-TERM"
36 "SECOND-LEADING-MONOMIAL"
37 "SECOND-LEADING-COEFFICIENT"
[3642]38 "ADD-TO"
[3646]39 "ADD"
[3642]40 "SUBTRACT-FROM"
[3646]41 "SUBTRACT"
[3071]42 "CHANGE-TERM-ORDER"
[3099]43 "STANDARD-EXTENSION"
[3101]44 "STANDARD-EXTENSION-1"
[3109]45 "STANDARD-SUM"
[3094]46 "SATURATION-EXTENSION"
[3655]47 "ALIST->POLY"
[3852]48 "->INFIX"
[3655]49 "UNIVERSAL-EZGCD"
[3678]50 "S-POLYNOMIAL"
[3686]51 "POLY-CONTENT"
[3692]52 "POLY-PRIMITIVE-PART"
[3714]53 "SATURATION-EXTENSION-1"
[3737]54 "MAKE-POLY-VARIABLE"
[3821]55 "MAKE-POLY-CONSTANT"
[4053]56 "MAKE-ZERO-FOR"
57 "MAKE-UNIT-FOR"
[3778]58 "UNIVERSAL-EXPT"
[3969]59 "UNIVERSAL-EQUALP"
60 "POLY-LENGTH"
[4062]61 "POLY-REVERSE"
[3900]62 "POLY-P"
[3901]63 "+LIST-MARKER+"
[3900]64 "POLY-EVAL")
[3489]65 (:documentation "Implements polynomials. A polynomial is essentially
66a mapping of monomials of the same degree to coefficients. The
67momomials are ordered according to a monomial order."))
[143]68
[431]69(in-package :polynomial)
70
[1927]71(proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0)))
[52]72
[2442]73(defclass poly ()
[3253]74 ((dimension :initform nil
[3250]75 :initarg :dimension
76 :accessor poly-dimension
[3242]77 :documentation "Shared dimension of all terms, the number of variables")
[3250]78 (termlist :initform nil :initarg :termlist :accessor poly-termlist
[3619]79 :documentation "List of terms.")
[3250]80 (order :initform #'lex> :initarg :order :accessor poly-term-order
[2697]81 :documentation "Monomial/term order."))
[3262]82 (:default-initargs :dimension nil :termlist nil :order #'lex>)
[2695]83 (:documentation "A polynomial with a list of terms TERMLIST, ordered
[2696]84according to term order ORDER, which defaults to LEX>."))
[2442]85
[2471]86(defmethod print-object ((self poly) stream)
[3241]87 (print-unreadable-object (self stream :type t :identity t)
[3243]88 (with-accessors ((dimension poly-dimension)
89 (termlist poly-termlist)
90 (order poly-term-order))
[3237]91 self
[3244]92 (format stream "DIMENSION=~A TERMLIST=~A ORDER=~A"
93 dimension termlist order))))
[2469]94
[3015]95(defgeneric change-term-order (self other)
[3012]96 (:documentation "Change term order of SELF to the term order of OTHER.")
[3010]97 (:method ((self poly) (other poly))
98 (unless (eq (poly-term-order self) (poly-term-order other))
[3620]99 (setf (poly-termlist self) (sort (poly-termlist self) (poly-term-order other))
[3010]100 (poly-term-order self) (poly-term-order other)))
[3012]101 self))
[3010]102
[3621]103(defgeneric poly-insert-term (self term)
[3622]104 (:documentation "Insert a term TERM into SELF before all other
[3621]105 terms. Order is not enforced.")
106 (:method ((self poly) (term term))
[3510]107 (cond ((null (poly-dimension self))
[3621]108 (setf (poly-dimension self) (monom-dimension term)))
109 (t (assert (= (poly-dimension self) (monom-dimension term)))))
110 (push term (poly-termlist self))
[3510]111 self))
112
[3622]113(defgeneric poly-append-term (self term)
114 (:documentation "Append a term TERM to SELF after all other terms. Order is not enforced.")
115 (:method ((self poly) (term term))
[3510]116 (cond ((null (poly-dimension self))
[3622]117 (setf (poly-dimension self) (monom-dimension term)))
118 (t (assert (= (poly-dimension self) (monom-dimension term)))))
119 (setf (cdr (last (poly-termlist self))) (list term))
[3510]120 self))
121
[3095]122(defun alist->poly (alist &aux (poly (make-instance 'poly)))
[3126]123 "It reads polynomial from an alist formatted as ( ... (exponents . coeff) ...).
124It can be used to enter simple polynomials by hand, e.g the polynomial
125in two variables, X and Y, given in standard notation as:
126
127 3*X^2*Y^3+2*Y+7
128
129can be entered as
130(ALIST->POLY '(((2 3) . 3) ((0 1) . 2) ((0 0) . 7))).
131
132NOTE: The primary use is for low-level debugging of the package."
[3099]133 (dolist (x alist poly)
[3705]134 (poly-insert-term poly (make-instance 'term :exponents (car x) :coeff (cdr x)))))
[3092]135
[3877]136(defmethod update-instance-for-different-class :after ((old term) (new poly) &key)
[3786]137 "Converts OLD of class TERM to a NEW of class POLY, by making it into a 1-element TERMLIST."
[3401]138 (reinitialize-instance new
139 :dimension (monom-dimension old)
[3786]140 :termlist (list old)))
[3796]141
[3877]142(defmethod update-instance-for-different-class :after ((old monom) (new poly) &key)
[3796]143 "Converts OLD of class MONOM to a NEW of class POLY, by making it into a 1-element TERMLIST."
144 (reinitialize-instance new
145 :dimension (monom-dimension old)
[3797]146 :termlist (list (change-class old 'term))))
[3403]147
[3624]148(defmethod universal-equalp ((self poly) (other poly))
149 "Implements equality of polynomials."
150 (and (eql (poly-dimension self) (poly-dimension other))
151 (every #'universal-equalp (poly-termlist self) (poly-termlist other))
152 (eq (poly-term-order self) (poly-term-order other))))
[2650]153
[3624]154(defgeneric leading-term (object)
[2442]155 (:method ((self poly))
[2525]156 (car (poly-termlist self)))
157 (:documentation "The leading term of a polynomial, or NIL for zero polynomial."))
[52]158
[3625]159(defgeneric second-leading-term (object)
[2442]160 (:method ((self poly))
[2525]161 (cadar (poly-termlist self)))
162 (:documentation "The second leading term of a polynomial, or NIL for a polynomial with at most one term."))
[52]163
[3656]164(defgeneric leading-monomial (object)
165 (:method ((self poly))
166 (change-class (copy-instance (leading-term self)) 'monom))
167 (:documentation "The leading monomial of a polynomial, or NIL for zero polynomial."))
168
169(defgeneric second-leading-monomial (object)
170 (:method ((self poly))
171 (change-class (copy-instance (second-leading-term self)) 'monom))
172 (:documentation "The leading monomial of a polynomial, or NIL for zero polynomial."))
173
[3625]174(defgeneric leading-coefficient (object)
[2442]175 (:method ((self poly))
[3642]176 (term-coeff (leading-term self)))
[2545]177 (:documentation "The leading coefficient of a polynomial. It signals error for a zero polynomial."))
[52]178
[2442]179(defgeneric second-leading-coefficient (object)
180 (:method ((self poly))
[3645]181 (term-coeff (second-leading-term self)))
[2906]182 (:documentation "The second leading coefficient of a polynomial. It
183 signals error for a polynomial with at most one term."))
[52]184
[3629]185(defmethod universal-zerop ((self poly))
186 "Return T iff SELF is a zero polynomial."
[3639]187 (null (poly-termlist self)))
[52]188
[3518]189(defgeneric poly-length (self)
[3630]190 (:documentation "Return the number of terms.")
[3518]191 (:method ((self poly))
192 (length (poly-termlist self))))
[52]193
[3689]194(defgeneric scalar-multiply-by (self other)
195 (:documentation "Multiply vector SELF by a scalar OTHER.")
196 (:method ((self poly) other)
197 (mapc #'(lambda (term) (setf (term-coeff term) (multiply (term-coeff term) other)))
198 (poly-termlist self))
199 self))
200
201(defgeneric scalar-divide-by (self other)
202 (:documentation "Divide vector SELF by a scalar OTHER.")
203 (:method ((self poly) other)
204 (mapc #'(lambda (term) (setf (term-coeff term) (divide (term-coeff term) other)))
205 (poly-termlist self))
206 self))
207
[4034]208(defmethod unary-inverse :before ((self poly))
[4035]209 "Checks invertibility of a polynomial SELF. To be invertable, the
210polynomial must be an invertible, constant polynomial."
[4034]211 (with-slots (termlist)
[4035]212 self
213 (assert (and (= (length termlist) 1) (zerop (total-degree (car termlist))))
214 nil
215 "To be invertible, the polynomial must have 1 term of total degree 0.")))
[4034]216
217(defmethod unary-inverse ((self poly))
[4035]218 "Returns the unary inverse of a polynomial SELF."
[4034]219 (with-slots (termlist)
220 self
[4035]221 (setf (car termlist) (unary-inverse (car termlist)))
222 self))
[4034]223
[3663]224(defmethod multiply-by ((self poly) (other monom))
[3630]225 "Multiply a polynomial SELF by OTHER."
226 (mapc #'(lambda (term) (multiply-by term other))
227 (poly-termlist self))
228 self)
[2469]229
[3672]230(defmethod multiply-by ((self poly) (other term))
231 "Multiply a polynomial SELF by OTHER."
232 (mapc #'(lambda (term) (multiply-by term other))
233 (poly-termlist self))
234 self)
235
[4071]236(defmethod multiply-by ((self monom) (other poly))
237 "Multiply a monomial SELF by polynomial OTHER."
238 (multiply-by other self))
239
240(defmethod multiply-by ((self term) (other poly))
241 "Multiply a term SELF by polynomial OTHER."
242 (multiply-by other self))
243
[2761]244(defmacro fast-add/subtract (p q order-fn add/subtract-fn uminus-fn)
[2755]245 "Return an expression which will efficiently adds/subtracts two
246polynomials, P and Q. The addition/subtraction of coefficients is
[3878]247performed by calling ADD/SUBTRACT-FN. If UMINUS-FN is supplied, it is
248used to negate the coefficients of Q which do not have a corresponding
249coefficient in P. The code implements an efficient algorithm to add
250two polynomials represented as sorted lists of terms. The code
251destroys both arguments, reusing the terms to build the result."
[3631]252 `(macrolet ((lc (x) `(term-coeff (car ,x))))
[2742]253 (do ((p ,p)
254 (q ,q)
255 r)
256 ((or (endp p) (endp q))
257 ;; NOTE: R contains the result in reverse order. Can it
258 ;; be more efficient to produce the terms in correct order?
[2774]259 (unless (endp q)
[2776]260 ;; Upon subtraction, we must change the sign of
261 ;; all coefficients in q
[2774]262 ,@(when uminus-fn
[2775]263 `((mapc #'(lambda (x) (setf x (funcall ,uminus-fn x))) q)))
[2774]264 (setf r (nreconc r q)))
[3887]265 (unless (endp p)
266 (setf r (nreconc r p)))
267 r)
[2742]268 (multiple-value-bind
269 (greater-p equal-p)
[3632]270 (funcall ,order-fn (car p) (car q))
[2742]271 (cond
272 (greater-p
273 (rotatef (cdr p) r p)
274 )
275 (equal-p
[2766]276 (let ((s (funcall ,add/subtract-fn (lc p) (lc q))))
[2742]277 (cond
[3640]278 ((universal-zerop s)
[2742]279 (setf p (cdr p))
280 )
281 (t
282 (setf (lc p) s)
283 (rotatef (cdr p) r p))))
284 (setf q (cdr q))
285 )
286 (t
[2743]287 ;;Negate the term of Q if UMINUS provided, signallig
288 ;;that we are doing subtraction
[2908]289 ,(when uminus-fn
290 `(setf (lc q) (funcall ,uminus-fn (lc q))))
[3887]291 (rotatef (cdr q) r q))))
292 ;;(format t "P:~A~%" p)
293 ;;(format t "Q:~A~%" q)
294 ;;(format t "R:~A~%" r)
295 )))
[2585]296
[2655]297
[3887]298
[3647]299(defgeneric add-to (self other)
300 (:documentation "Add OTHER to SELF.")
301 (:method ((self number) (other number))
[3819]302 (+ self other))
303 (:method ((self poly) (other number))
[3865]304 (add-to self (make-poly-constant (poly-dimension self) other)))
305 (:method ((self number) (other poly))
306 (add-to (make-poly-constant (poly-dimension other) self) other)))
[3819]307
[3647]308
309(defgeneric subtract-from (self other)
[3648]310 (:documentation "Subtract OTHER from SELF.")
311 (:method ((self number) (other number))
[3830]312 (- self other))
313 (:method ((self poly) (other number))
314 (subtract-from self (make-poly-constant (poly-dimension self) other))))
[3647]315
[3969]316
[3884]317#|
[3750]318(defmacro def-add/subtract-method (add/subtract-method-name
[3749]319 uminus-method-name
320 &optional
321 (doc-string nil doc-string-supplied-p))
[3647]322 "This macro avoids code duplication for two similar operations: ADD-TO and SUBTRACT-FROM."
[2749]323 `(defmethod ,add/subtract-method-name ((self poly) (other poly))
[2615]324 ,@(when doc-string-supplied-p `(,doc-string))
[2769]325 ;; Ensure orders are compatible
[3015]326 (change-term-order other self)
[2772]327 (setf (poly-termlist self) (fast-add/subtract
328 (poly-termlist self) (poly-termlist other)
329 (poly-term-order self)
330 #',add/subtract-method-name
331 ,(when uminus-method-name `(function ,uminus-method-name))))
[3748]332 self))
[3908]333
334(eval-when (:load-toplevel :execute)
335
336 (def-add/subtract-method add-to nil
337 "Adds to polynomial SELF another polynomial OTHER.
338This operation destructively modifies both polynomials.
339The result is stored in SELF. This implementation does
340no consing, entirely reusing the sells of SELF and OTHER.")
341
342 (def-add/subtract-method subtract-from unary-minus
343 "Subtracts from polynomial SELF another polynomial OTHER.
344This operation destructively modifies both polynomials.
345The result is stored in SELF. This implementation does
346no consing, entirely reusing the sells of SELF and OTHER.")
347 )
348
[3884]349|#
[2487]350
[3880]351(defmethod unary-minus ((self poly))
352 "Destructively modifies the coefficients of the polynomial SELF,
353by changing their sign."
354 (mapc #'unary-minus (poly-termlist self))
355 self)
356
357(defun add-termlists (p q order-fn)
358 "Destructively adds two termlists P and Q ordered according to ORDER-FN."
359 (fast-add/subtract p q order-fn #'add-to nil))
360
[3881]361(defun subtract-termlists (p q order-fn)
[3885]362 "Destructively subtracts two termlists P and Q ordered according to ORDER-FN."
[3882]363 (fast-add/subtract p q order-fn #'subtract-from #'unary-minus))
[3881]364
[3879]365(defmethod add-to ((self poly) (other poly))
366 "Adds to polynomial SELF another polynomial OTHER.
[2610]367This operation destructively modifies both polynomials.
368The result is stored in SELF. This implementation does
[3879]369no consing, entirely reusing the sells of SELF and OTHER."
370 (change-term-order other self)
371 (setf (poly-termlist self) (add-termlists
372 (poly-termlist self) (poly-termlist other)
[3883]373 (poly-term-order self)))
374 self)
[3879]375
[2609]376
[3879]377(defmethod subtract-from ((self poly) (other poly))
[2753]378 "Subtracts from polynomial SELF another polynomial OTHER.
[2610]379This operation destructively modifies both polynomials.
380The result is stored in SELF. This implementation does
[3879]381no consing, entirely reusing the sells of SELF and OTHER."
382 (change-term-order other self)
383 (setf (poly-termlist self) (subtract-termlists
384 (poly-termlist self) (poly-termlist other)
[3883]385 (poly-term-order self)))
386 self)
[2777]387
[4103]388
389(defmethod add-to ((self poly) (other term))
[4105]390 "Adds to a polynomial SELF a term OTHER. The term OTHER is not
391modified."
[4104]392 (add-to self (change-class (copy-instance other) 'poly)))
[4103]393
394(defmethod subtract-from ((self poly) (other term))
[4105]395 "Subtracts from a polynomial SELF a term OTHER. The term OTHER is not
396modified."
[4104]397 (subtract-from self (change-class (copy-instance other) 'poly)))
[4103]398
399
[2800]400(defmacro multiply-term-by-termlist-dropping-zeros (term termlist
[2927]401 &optional (reverse-arg-order-P nil))
[2799]402 "Multiplies term TERM by a list of term, TERMLIST.
[2792]403Takes into accound divisors of zero in the ring, by
[2927]404deleting zero terms. Optionally, if REVERSE-ARG-ORDER-P
[2928]405is T, change the order of arguments; this may be important
[2927]406if we extend the package to non-commutative rings."
[2800]407 `(mapcan #'(lambda (other-term)
[3633]408 (let ((prod (multiply
[2923]409 ,@(cond
[2930]410 (reverse-arg-order-p
[2925]411 `(other-term ,term))
412 (t
413 `(,term other-term))))))
[2800]414 (cond
[3633]415 ((universal-zerop prod) nil)
[2800]416 (t (list prod)))))
417 ,termlist))
[2790]418
[2796]419(defun multiply-termlists (p q order-fn)
[3127]420 "A version of polynomial multiplication, operating
421directly on termlists."
[2787]422 (cond
[2917]423 ((or (endp p) (endp q))
424 ;;p or q is 0 (represented by NIL)
425 nil)
[2789]426 ;; If p= p0+p1 and q=q0+q1 then p*q=p0*q0+p0*q1+p1*q
[2787]427 ((endp (cdr p))
[2918]428 (multiply-term-by-termlist-dropping-zeros (car p) q))
429 ((endp (cdr q))
[2919]430 (multiply-term-by-termlist-dropping-zeros (car q) p t))
431 (t
[4101]432 (cons (multiply (car p) (car q))
[2949]433 (add-termlists
434 (multiply-term-by-termlist-dropping-zeros (car p) (cdr q))
435 (multiply-termlists (cdr p) q order-fn)
436 order-fn)))))
[2793]437
[2803]438(defmethod multiply-by ((self poly) (other poly))
[3014]439 (change-term-order other self)
[2803]440 (setf (poly-termlist self) (multiply-termlists (poly-termlist self)
441 (poly-termlist other)
442 (poly-term-order self)))
443 self)
444
[3804]445(defgeneric add-2 (object1 object2)
446 (:documentation "Non-destructively add OBJECT1 to OBJECT2.")
[3813]447 (:method ((object1 t) (object2 t))
[3804]448 (add-to (copy-instance object1) (copy-instance object2))))
[3374]449
[3803]450(defun add (&rest summands)
451 "Non-destructively adds list SUMMANDS."
452 (cond ((endp summands) 0)
[3818]453 (t (reduce #'add-2 summands))))
[3803]454
[3634]455(defun subtract (minuend &rest subtrahends)
[3427]456 "Non-destructively subtract MINUEND and SUBTRAHENDS."
[3851]457 (cond ((endp subtrahends) (unary-minus minuend))
458 (t (subtract-from (copy-instance minuend) (reduce #'add subtrahends)))))
[3374]459
[3062]460(defmethod left-tensor-product-by ((self poly) (other monom))
461 (setf (poly-termlist self)
462 (mapcan #'(lambda (term)
463 (let ((prod (left-tensor-product-by term other)))
464 (cond
[3640]465 ((universal-zerop prod) nil)
[3062]466 (t (list prod)))))
467 (poly-termlist self)))
[3249]468 (incf (poly-dimension self) (monom-dimension other))
[3062]469 self)
[3044]470
[3062]471(defmethod right-tensor-product-by ((self poly) (other monom))
472 (setf (poly-termlist self)
473 (mapcan #'(lambda (term)
474 (let ((prod (right-tensor-product-by term other)))
475 (cond
[3640]476 ((universal-zerop prod) nil)
[3062]477 (t (list prod)))))
478 (poly-termlist self)))
[3249]479 (incf (poly-dimension self) (monom-dimension other))
[3062]480 self)
481
482
[3084]483(defun standard-extension (plist &aux (k (length plist)) (i 0))
[2716]484 "Calculate [U1*P1,U2*P2,...,UK*PK], where PLIST=[P1,P2,...,PK]
[3060]485is a list of polynomials. Destructively modifies PLIST elements."
[3061]486 (mapc #'(lambda (poly)
[3085]487 (left-tensor-product-by
488 poly
489 (prog1
490 (make-monom-variable k i)
491 (incf i))))
[3061]492 plist))
[52]493
[3087]494(defun standard-extension-1 (plist
495 &aux
[3096]496 (plist (standard-extension plist))
[3087]497 (nvars (poly-dimension (car plist))))
[3081]498 "Calculate [U1*P1-1,U2*P2-1,...,UK*PK-1], where PLIST=[P1,P2,...,PK].
[3087]499Firstly, new K variables U1, U2, ..., UK, are inserted into each
500polynomial. Subsequently, P1, P2, ..., PK are destructively modified
[3105]501tantamount to replacing PI with UI*PI-1. It assumes that all
[3106]502polynomials have the same dimension, and only the first polynomial
503is examined to determine this dimension."
[3089]504 ;; Implementation note: we use STANDARD-EXTENSION and then subtract
505 ;; 1 from each polynomial; since UI*PI has no constant term,
506 ;; we just need to append the constant term at the end
507 ;; of each termlist.
[3064]508 (flet ((subtract-1 (p)
[3641]509 (poly-append-term p (make-instance 'term :dimension nvars :coeff -1))))
[3083]510 (setf plist (mapc #'subtract-1 plist)))
[3077]511 plist)
[52]512
513
[3107]514(defun standard-sum (plist
515 &aux
516 (plist (standard-extension plist))
517 (nvars (poly-dimension (car plist))))
[3087]518 "Calculate the polynomial U1*P1+U2*P2+...+UK*PK-1, where PLIST=[P1,P2,...,PK].
519Firstly, new K variables, U1, U2, ..., UK, are inserted into each
520polynomial. Subsequently, P1, P2, ..., PK are destructively modified
521tantamount to replacing PI with UI*PI, and the resulting polynomials
[3117]522are added. Finally, 1 is subtracted. It should be noted that the term
523order is not modified, which is equivalent to using a lexicographic
524order on the first K variables."
[3107]525 (flet ((subtract-1 (p)
[3641]526 (poly-append-term p (make-instance 'term :dimension nvars :coeff -1))))
[3108]527 (subtract-1
528 (make-instance
529 'poly
[3115]530 :termlist (apply #'nconc (mapcar #'poly-termlist plist))))))
[52]531
[3653]532(defgeneric universal-ezgcd (x y)
533 (:documentation "Solves the diophantine system: X=C*X1, Y=C*X2,
534C=GCD(X,Y). It returns C, X1 and Y1. The result may be obtained by
535the Euclidean algorithm.")
536 (:method ((x integer) (y integer)
537 &aux (c (gcd x y)))
538 (values c (/ x c) (/ y c)))
539 )
540
[3655]541(defgeneric s-polynomial (object1 object2)
[3651]542 (:documentation "Yields the S-polynomial of OBJECT1 and OBJECT2.")
543 (:method ((f poly) (g poly))
544 (let* ((lcm (universal-lcm (leading-monomial f) (leading-monomial g)))
545 (mf (divide lcm (leading-monomial f)))
546 (mg (divide lcm (leading-monomial g))))
547 (multiple-value-bind (c cf cg)
[3652]548 (universal-ezgcd (leading-coefficient f) (leading-coefficient g))
[3651]549 (declare (ignore c))
550 (subtract
[4092]551 (multiply-by f (change-class mf 'term :coeff cg))
552 (multiply-by g (change-class mg 'term :coeff cf)))))))
[3651]553
[3676]554(defgeneric poly-content (object)
555 (:documentation "Greatest common divisor of the coefficients of the polynomial object OBJECT.")
[3677]556 (:method ((self poly))
557 (reduce #'universal-gcd
[3679]558 (mapcar #'term-coeff (rest (poly-termlist self)))
559 :initial-value (leading-coefficient self))))
[3676]560
[3684]561(defun poly-primitive-part (object)
[3685]562 "Divide polynomial OBJECT by gcd of its
[3684]563coefficients. Return the resulting polynomial."
[3688]564 (scalar-divide-by object (poly-content object)))
[3682]565
[3700]566(defun poly-insert-variables (self k)
[3697]567 (left-tensor-product-by self (make-instance 'monom :dimension k)))
568
[3698]569(defun saturation-extension (f plist &aux (k (length plist)))
[3708]570 "Calculate [F', U1*P1-1,U2*P2-1,...,UK*PK-1], where
571PLIST=[P1,P2,...,PK] and F' is F with variables U1,U2,...,UK inserted
[3711]572as first K variables. It destructively modifies F and PLIST."
[3700]573 (nconc (mapc #'(lambda (x) (poly-insert-variables x k)) f)
[3699]574 (standard-extension-1 plist)))
[3694]575
[3699]576(defun polysaturation-extension (f plist &aux (k (length plist)))
[3708]577 "Calculate [F', U1*P1+U2*P2+...+UK*PK-1], where PLIST=[P1,P2,...,PK]
578and F' is F with variables U1,U2,...,UK inserted as first K
[3711]579variables. It destructively modifies F and PLIST."
[3700]580 (nconc (mapc #'(lambda (x) (poly-insert-variables x k)) f)
[3703]581 (list (standard-sum plist))))
[3694]582
[3691]583(defun saturation-extension-1 (f p)
[3712]584 "Given family of polynomials F and a polynomial P, calculate [F',
585U*P-1], where F' is F with variable inserted as the first variable. It
586destructively modifies F and P."
[3693]587 (polysaturation-extension f (list p)))
[3713]588
[3717]589(defmethod multiply-by ((object1 number) (object2 poly))
[3720]590 (scalar-multiply-by (copy-instance object2) object1))
[3716]591
[4068]592(defmethod multiply-by ((object1 poly) (object2 number))
593 (scalar-multiply-by (copy-instance object1) object2))
594
[3781]595(defun make-poly-variable (nvars pos &optional (power 1))
596 (change-class (make-monom-variable nvars pos power) 'poly))
[3736]597
[3821]598(defun make-poly-constant (nvars coeff)
599 (change-class (make-term-constant nvars coeff) 'poly))
600
[3713]601(defgeneric universal-expt (x y)
[3721]602 (:documentation "Raises X to power Y.")
[3713]603 (:method ((x number) (y integer)) (expt x y))
604 (:method ((x t) (y integer))
605 (declare (type fixnum y))
606 (cond
607 ((minusp y) (error "universal-expt: Negative exponent."))
608 ((universal-zerop x) (if (zerop y) 1))
609 (t
610 (do ((k 1 (ash k 1))
611 (q x (multiply q q)) ;keep squaring
612 (p 1 (if (not (zerop (logand k y))) (multiply p q) p)))
613 ((> k y) p)
[3778]614 (declare (fixnum k)))))))
615
616(defgeneric poly-p (object)
617 (:documentation "Checks if an object is a polynomial.")
[3779]618 (:method ((self poly)) t)
[3778]619 (:method ((self t)) nil))
[3830]620
[4021]621(defmethod ->sexp :before ((self poly) &optional vars)
[3905]622 "Ensures that the number of variables in VARS maches the polynomial dimension of the
623polynomial SELF."
[4027]624 (with-slots (dimension)
625 self
626 (assert (= (length vars) dimension)
[4028]627 nil
[4027]628 "Number of variables ~S does not match the dimension ~S"
629 vars dimension)))
[3904]630
[4021]631(defmethod ->sexp ((self poly) &optional vars)
[3905]632 "Converts a polynomial SELF to a sexp."
[4036]633 (let ((m (mapcar #'(lambda (x) (->sexp x vars))
[3830]634 (poly-termlist self))))
[4053]635 (cond ((endp m) 0)
[4036]636 ((endp (cdr m)) (car m))
637 (t (cons '+ m)))))
[3899]638
[3903]639(defparameter +list-marker+ :[
640 "A sexp with this head is considered a list of polynomials.")
641
[4021]642(defmethod ->sexp ((self cons) &optional vars)
[3906]643 (assert (eql (car self) +list-marker+))
[4021]644 (cons +list-marker+ (mapcar #'(lambda (p) (->sexp p vars)) (cdr self))))
[3906]645
646
[3899]647(defun poly-eval (expr vars order)
648 "Evaluate Lisp form EXPR to a polynomial or a list of polynomials in
649variables VARS. Return the resulting polynomial or list of
650polynomials. Standard arithmetical operators in form EXPR are
651replaced with their analogues in the ring of polynomials, and the
652resulting expression is evaluated, resulting in a polynomial or a list
653of polynomials in internal form. A similar operation in another computer
654algebra system could be called 'expand' or so."
655 (labels ((p-eval (p) (poly-eval p vars order))
656 (p-eval-list (plist) (mapcar #'p-eval plist)))
657 (cond
658 ((eq expr 0)
659 (make-instance 'poly :dimension (length vars)))
660 ((member expr vars :test #'equalp)
661 (let ((pos (position expr vars :test #'equalp)))
662 (make-poly-variable (length vars) pos)))
663 ((atom expr)
[4015]664 (make-poly-constant (length vars) expr))
[3899]665 ((eq (car expr) +list-marker+)
666 (cons +list-marker+ (p-eval-list (cdr expr))))
667 (t
668 (case (car expr)
669 (+ (reduce #'add (p-eval-list (cdr expr))))
670 (- (apply #'subtract (p-eval-list (cdr expr))))
671 (*
672 (if (endp (cddr expr)) ;unary
673 (p-eval (cadr expr))
[4101]674 (apply #'multiply (p-eval-list (cdr expr)))))
[3899]675 (/
676 ;; A polynomial can be divided by a scalar
677 (cond
678 ((endp (cddr expr))
679 ;; A special case (/ ?), the inverse
680 (divide (cadr expr)))
681 (t
682 (let ((num (p-eval (cadr expr)))
[4016]683 (denom-inverse (apply #'divide (mapcar #'p-eval (cddr expr)))))
[3899]684 (multiply denom-inverse num)))))
685 (expt
686 (cond
687 ((member (cadr expr) vars :test #'equalp)
688 ;;Special handling of (expt var pow)
689 (let ((pos (position (cadr expr) vars :test #'equalp)))
690 (make-poly-variable (length vars) pos (caddr expr))))
691 ((not (and (integerp (caddr expr)) (plusp (caddr expr))))
692 ;; Negative power means division in coefficient ring
693 ;; Non-integer power means non-polynomial coefficient
694 expr)
695 (t (universal-expt (p-eval (cadr expr)) (caddr expr)))))
696 (otherwise
[4017]697 (error "Cannot evaluate as polynomial: ~A" expr)))))))
[4053]698
699(defgeneric make-zero-for (self)
700 (:method ((self poly))
701 (make-instance 'poly :dimension (poly-dimension self))))
702
703(defgeneric make-unit-for (self)
704 (:method ((self poly))
705 (make-poly-constant (poly-dimension self) 1)))
[4057]706
[4068]707(defgeneric poly-reverse (self)
[4061]708 (:documentation "Reverse the order of terms in a polynomial SELF.")
[4057]709 (:method ((self poly))
710 (with-slots (termlist)
711 self
[4060]712 (setf termlist (nreverse termlist)))
[4057]713 self))
714
715
[4053]716
Note: See TracBrowser for help on using the repository browser.