close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/polynomial.lisp@ 4069

Last change on this file since 4069 was 4068, checked in by Marek Rychlik, 9 years ago

* empty log message *

File size: 25.0 KB
RevLine 
[3400]1;;----------------------------------------------------------------
[1201]2;;; -*- Mode: Lisp -*-
[77]3;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
4;;;
5;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
6;;;
7;;; This program is free software; you can redistribute it and/or modify
8;;; it under the terms of the GNU General Public License as published by
9;;; the Free Software Foundation; either version 2 of the License, or
10;;; (at your option) any later version.
11;;;
12;;; This program is distributed in the hope that it will be useful,
13;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
14;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15;;; GNU General Public License for more details.
16;;;
17;;; You should have received a copy of the GNU General Public License
18;;; along with this program; if not, write to the Free Software
19;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20;;;
21;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
22
[431]23(defpackage "POLYNOMIAL"
[3643]24 (:use :cl :utils :monom :copy)
[2596]25 (:export "POLY"
[3270]26 "POLY-DIMENSION"
[2596]27 "POLY-TERMLIST"
[3016]28 "POLY-TERM-ORDER"
[3509]29 "POLY-INSERT-TERM"
[3690]30 "SCALAR-MULTIPLY-BY"
31 "SCALAR-DIVIDE-BY"
[3642]32 "LEADING-TERM"
[3657]33 "LEADING-MONOMIAL"
[3642]34 "LEADING-COEFFICIENT"
[3657]35 "SECOND-LEADING-TERM"
36 "SECOND-LEADING-MONOMIAL"
37 "SECOND-LEADING-COEFFICIENT"
[3642]38 "ADD-TO"
[3646]39 "ADD"
[3642]40 "SUBTRACT-FROM"
[3646]41 "SUBTRACT"
[3071]42 "CHANGE-TERM-ORDER"
[3099]43 "STANDARD-EXTENSION"
[3101]44 "STANDARD-EXTENSION-1"
[3109]45 "STANDARD-SUM"
[3094]46 "SATURATION-EXTENSION"
[3655]47 "ALIST->POLY"
[3852]48 "->INFIX"
[3655]49 "UNIVERSAL-EZGCD"
[3678]50 "S-POLYNOMIAL"
[3686]51 "POLY-CONTENT"
[3692]52 "POLY-PRIMITIVE-PART"
[3714]53 "SATURATION-EXTENSION-1"
[3737]54 "MAKE-POLY-VARIABLE"
[3821]55 "MAKE-POLY-CONSTANT"
[4053]56 "MAKE-ZERO-FOR"
57 "MAKE-UNIT-FOR"
[3778]58 "UNIVERSAL-EXPT"
[3969]59 "UNIVERSAL-EQUALP"
60 "POLY-LENGTH"
[4062]61 "POLY-REVERSE"
[3900]62 "POLY-P"
[3901]63 "+LIST-MARKER+"
[3900]64 "POLY-EVAL")
[3489]65 (:documentation "Implements polynomials. A polynomial is essentially
66a mapping of monomials of the same degree to coefficients. The
67momomials are ordered according to a monomial order."))
[143]68
[431]69(in-package :polynomial)
70
[1927]71(proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0)))
[52]72
[2442]73(defclass poly ()
[3253]74 ((dimension :initform nil
[3250]75 :initarg :dimension
76 :accessor poly-dimension
[3242]77 :documentation "Shared dimension of all terms, the number of variables")
[3250]78 (termlist :initform nil :initarg :termlist :accessor poly-termlist
[3619]79 :documentation "List of terms.")
[3250]80 (order :initform #'lex> :initarg :order :accessor poly-term-order
[2697]81 :documentation "Monomial/term order."))
[3262]82 (:default-initargs :dimension nil :termlist nil :order #'lex>)
[2695]83 (:documentation "A polynomial with a list of terms TERMLIST, ordered
[2696]84according to term order ORDER, which defaults to LEX>."))
[2442]85
[2471]86(defmethod print-object ((self poly) stream)
[3241]87 (print-unreadable-object (self stream :type t :identity t)
[3243]88 (with-accessors ((dimension poly-dimension)
89 (termlist poly-termlist)
90 (order poly-term-order))
[3237]91 self
[3244]92 (format stream "DIMENSION=~A TERMLIST=~A ORDER=~A"
93 dimension termlist order))))
[2469]94
[3015]95(defgeneric change-term-order (self other)
[3012]96 (:documentation "Change term order of SELF to the term order of OTHER.")
[3010]97 (:method ((self poly) (other poly))
98 (unless (eq (poly-term-order self) (poly-term-order other))
[3620]99 (setf (poly-termlist self) (sort (poly-termlist self) (poly-term-order other))
[3010]100 (poly-term-order self) (poly-term-order other)))
[3012]101 self))
[3010]102
[3621]103(defgeneric poly-insert-term (self term)
[3622]104 (:documentation "Insert a term TERM into SELF before all other
[3621]105 terms. Order is not enforced.")
106 (:method ((self poly) (term term))
[3510]107 (cond ((null (poly-dimension self))
[3621]108 (setf (poly-dimension self) (monom-dimension term)))
109 (t (assert (= (poly-dimension self) (monom-dimension term)))))
110 (push term (poly-termlist self))
[3510]111 self))
112
[3622]113(defgeneric poly-append-term (self term)
114 (:documentation "Append a term TERM to SELF after all other terms. Order is not enforced.")
115 (:method ((self poly) (term term))
[3510]116 (cond ((null (poly-dimension self))
[3622]117 (setf (poly-dimension self) (monom-dimension term)))
118 (t (assert (= (poly-dimension self) (monom-dimension term)))))
119 (setf (cdr (last (poly-termlist self))) (list term))
[3510]120 self))
121
[3095]122(defun alist->poly (alist &aux (poly (make-instance 'poly)))
[3126]123 "It reads polynomial from an alist formatted as ( ... (exponents . coeff) ...).
124It can be used to enter simple polynomials by hand, e.g the polynomial
125in two variables, X and Y, given in standard notation as:
126
127 3*X^2*Y^3+2*Y+7
128
129can be entered as
130(ALIST->POLY '(((2 3) . 3) ((0 1) . 2) ((0 0) . 7))).
131
132NOTE: The primary use is for low-level debugging of the package."
[3099]133 (dolist (x alist poly)
[3705]134 (poly-insert-term poly (make-instance 'term :exponents (car x) :coeff (cdr x)))))
[3092]135
[3877]136(defmethod update-instance-for-different-class :after ((old term) (new poly) &key)
[3786]137 "Converts OLD of class TERM to a NEW of class POLY, by making it into a 1-element TERMLIST."
[3401]138 (reinitialize-instance new
139 :dimension (monom-dimension old)
[3786]140 :termlist (list old)))
[3796]141
[3877]142(defmethod update-instance-for-different-class :after ((old monom) (new poly) &key)
[3796]143 "Converts OLD of class MONOM to a NEW of class POLY, by making it into a 1-element TERMLIST."
144 (reinitialize-instance new
145 :dimension (monom-dimension old)
[3797]146 :termlist (list (change-class old 'term))))
[3403]147
[3624]148(defmethod universal-equalp ((self poly) (other poly))
149 "Implements equality of polynomials."
150 (and (eql (poly-dimension self) (poly-dimension other))
151 (every #'universal-equalp (poly-termlist self) (poly-termlist other))
152 (eq (poly-term-order self) (poly-term-order other))))
[2650]153
[3624]154(defgeneric leading-term (object)
[2442]155 (:method ((self poly))
[2525]156 (car (poly-termlist self)))
157 (:documentation "The leading term of a polynomial, or NIL for zero polynomial."))
[52]158
[3625]159(defgeneric second-leading-term (object)
[2442]160 (:method ((self poly))
[2525]161 (cadar (poly-termlist self)))
162 (:documentation "The second leading term of a polynomial, or NIL for a polynomial with at most one term."))
[52]163
[3656]164(defgeneric leading-monomial (object)
165 (:method ((self poly))
166 (change-class (copy-instance (leading-term self)) 'monom))
167 (:documentation "The leading monomial of a polynomial, or NIL for zero polynomial."))
168
169(defgeneric second-leading-monomial (object)
170 (:method ((self poly))
171 (change-class (copy-instance (second-leading-term self)) 'monom))
172 (:documentation "The leading monomial of a polynomial, or NIL for zero polynomial."))
173
[3625]174(defgeneric leading-coefficient (object)
[2442]175 (:method ((self poly))
[3642]176 (term-coeff (leading-term self)))
[2545]177 (:documentation "The leading coefficient of a polynomial. It signals error for a zero polynomial."))
[52]178
[2442]179(defgeneric second-leading-coefficient (object)
180 (:method ((self poly))
[3645]181 (term-coeff (second-leading-term self)))
[2906]182 (:documentation "The second leading coefficient of a polynomial. It
183 signals error for a polynomial with at most one term."))
[52]184
[3629]185(defmethod universal-zerop ((self poly))
186 "Return T iff SELF is a zero polynomial."
[3639]187 (null (poly-termlist self)))
[52]188
[3518]189(defgeneric poly-length (self)
[3630]190 (:documentation "Return the number of terms.")
[3518]191 (:method ((self poly))
192 (length (poly-termlist self))))
[52]193
[3689]194(defgeneric scalar-multiply-by (self other)
195 (:documentation "Multiply vector SELF by a scalar OTHER.")
196 (:method ((self poly) other)
197 (mapc #'(lambda (term) (setf (term-coeff term) (multiply (term-coeff term) other)))
198 (poly-termlist self))
199 self))
200
201(defgeneric scalar-divide-by (self other)
202 (:documentation "Divide vector SELF by a scalar OTHER.")
203 (:method ((self poly) other)
204 (mapc #'(lambda (term) (setf (term-coeff term) (divide (term-coeff term) other)))
205 (poly-termlist self))
206 self))
207
[4034]208(defmethod unary-inverse :before ((self poly))
[4035]209 "Checks invertibility of a polynomial SELF. To be invertable, the
210polynomial must be an invertible, constant polynomial."
[4034]211 (with-slots (termlist)
[4035]212 self
213 (assert (and (= (length termlist) 1) (zerop (total-degree (car termlist))))
214 nil
215 "To be invertible, the polynomial must have 1 term of total degree 0.")))
[4034]216
217(defmethod unary-inverse ((self poly))
[4035]218 "Returns the unary inverse of a polynomial SELF."
[4034]219 (with-slots (termlist)
220 self
[4035]221 (setf (car termlist) (unary-inverse (car termlist)))
222 self))
[4034]223
[3663]224(defmethod multiply-by ((self poly) (other monom))
[3630]225 "Multiply a polynomial SELF by OTHER."
226 (mapc #'(lambda (term) (multiply-by term other))
227 (poly-termlist self))
228 self)
[2469]229
[3672]230(defmethod multiply-by ((self poly) (other term))
231 "Multiply a polynomial SELF by OTHER."
232 (mapc #'(lambda (term) (multiply-by term other))
233 (poly-termlist self))
234 self)
235
[2761]236(defmacro fast-add/subtract (p q order-fn add/subtract-fn uminus-fn)
[2755]237 "Return an expression which will efficiently adds/subtracts two
238polynomials, P and Q. The addition/subtraction of coefficients is
[3878]239performed by calling ADD/SUBTRACT-FN. If UMINUS-FN is supplied, it is
240used to negate the coefficients of Q which do not have a corresponding
241coefficient in P. The code implements an efficient algorithm to add
242two polynomials represented as sorted lists of terms. The code
243destroys both arguments, reusing the terms to build the result."
[3631]244 `(macrolet ((lc (x) `(term-coeff (car ,x))))
[2742]245 (do ((p ,p)
246 (q ,q)
247 r)
248 ((or (endp p) (endp q))
249 ;; NOTE: R contains the result in reverse order. Can it
250 ;; be more efficient to produce the terms in correct order?
[2774]251 (unless (endp q)
[2776]252 ;; Upon subtraction, we must change the sign of
253 ;; all coefficients in q
[2774]254 ,@(when uminus-fn
[2775]255 `((mapc #'(lambda (x) (setf x (funcall ,uminus-fn x))) q)))
[2774]256 (setf r (nreconc r q)))
[3887]257 (unless (endp p)
258 (setf r (nreconc r p)))
259 r)
[2742]260 (multiple-value-bind
261 (greater-p equal-p)
[3632]262 (funcall ,order-fn (car p) (car q))
[2742]263 (cond
264 (greater-p
265 (rotatef (cdr p) r p)
266 )
267 (equal-p
[2766]268 (let ((s (funcall ,add/subtract-fn (lc p) (lc q))))
[2742]269 (cond
[3640]270 ((universal-zerop s)
[2742]271 (setf p (cdr p))
272 )
273 (t
274 (setf (lc p) s)
275 (rotatef (cdr p) r p))))
276 (setf q (cdr q))
277 )
278 (t
[2743]279 ;;Negate the term of Q if UMINUS provided, signallig
280 ;;that we are doing subtraction
[2908]281 ,(when uminus-fn
282 `(setf (lc q) (funcall ,uminus-fn (lc q))))
[3887]283 (rotatef (cdr q) r q))))
284 ;;(format t "P:~A~%" p)
285 ;;(format t "Q:~A~%" q)
286 ;;(format t "R:~A~%" r)
287 )))
[2585]288
[2655]289
[3887]290
[3647]291(defgeneric add-to (self other)
292 (:documentation "Add OTHER to SELF.")
293 (:method ((self number) (other number))
[3819]294 (+ self other))
295 (:method ((self poly) (other number))
[3865]296 (add-to self (make-poly-constant (poly-dimension self) other)))
297 (:method ((self number) (other poly))
298 (add-to (make-poly-constant (poly-dimension other) self) other)))
[3819]299
[3647]300
301(defgeneric subtract-from (self other)
[3648]302 (:documentation "Subtract OTHER from SELF.")
303 (:method ((self number) (other number))
[3830]304 (- self other))
305 (:method ((self poly) (other number))
306 (subtract-from self (make-poly-constant (poly-dimension self) other))))
[3647]307
[3969]308
[3884]309#|
[3750]310(defmacro def-add/subtract-method (add/subtract-method-name
[3749]311 uminus-method-name
312 &optional
313 (doc-string nil doc-string-supplied-p))
[3647]314 "This macro avoids code duplication for two similar operations: ADD-TO and SUBTRACT-FROM."
[2749]315 `(defmethod ,add/subtract-method-name ((self poly) (other poly))
[2615]316 ,@(when doc-string-supplied-p `(,doc-string))
[2769]317 ;; Ensure orders are compatible
[3015]318 (change-term-order other self)
[2772]319 (setf (poly-termlist self) (fast-add/subtract
320 (poly-termlist self) (poly-termlist other)
321 (poly-term-order self)
322 #',add/subtract-method-name
323 ,(when uminus-method-name `(function ,uminus-method-name))))
[3748]324 self))
[3908]325
326(eval-when (:load-toplevel :execute)
327
328 (def-add/subtract-method add-to nil
329 "Adds to polynomial SELF another polynomial OTHER.
330This operation destructively modifies both polynomials.
331The result is stored in SELF. This implementation does
332no consing, entirely reusing the sells of SELF and OTHER.")
333
334 (def-add/subtract-method subtract-from unary-minus
335 "Subtracts from polynomial SELF another polynomial OTHER.
336This operation destructively modifies both polynomials.
337The result is stored in SELF. This implementation does
338no consing, entirely reusing the sells of SELF and OTHER.")
339 )
340
[3884]341|#
[2487]342
[3880]343(defmethod unary-minus ((self poly))
344 "Destructively modifies the coefficients of the polynomial SELF,
345by changing their sign."
346 (mapc #'unary-minus (poly-termlist self))
347 self)
348
349(defun add-termlists (p q order-fn)
350 "Destructively adds two termlists P and Q ordered according to ORDER-FN."
351 (fast-add/subtract p q order-fn #'add-to nil))
352
[3881]353(defun subtract-termlists (p q order-fn)
[3885]354 "Destructively subtracts two termlists P and Q ordered according to ORDER-FN."
[3882]355 (fast-add/subtract p q order-fn #'subtract-from #'unary-minus))
[3881]356
[3879]357(defmethod add-to ((self poly) (other poly))
358 "Adds to polynomial SELF another polynomial OTHER.
[2610]359This operation destructively modifies both polynomials.
360The result is stored in SELF. This implementation does
[3879]361no consing, entirely reusing the sells of SELF and OTHER."
362 (change-term-order other self)
363 (setf (poly-termlist self) (add-termlists
364 (poly-termlist self) (poly-termlist other)
[3883]365 (poly-term-order self)))
366 self)
[3879]367
[2609]368
[3879]369(defmethod subtract-from ((self poly) (other poly))
[2753]370 "Subtracts from polynomial SELF another polynomial OTHER.
[2610]371This operation destructively modifies both polynomials.
372The result is stored in SELF. This implementation does
[3879]373no consing, entirely reusing the sells of SELF and OTHER."
374 (change-term-order other self)
375 (setf (poly-termlist self) (subtract-termlists
376 (poly-termlist self) (poly-termlist other)
[3883]377 (poly-term-order self)))
378 self)
[2777]379
[2800]380(defmacro multiply-term-by-termlist-dropping-zeros (term termlist
[2927]381 &optional (reverse-arg-order-P nil))
[2799]382 "Multiplies term TERM by a list of term, TERMLIST.
[2792]383Takes into accound divisors of zero in the ring, by
[2927]384deleting zero terms. Optionally, if REVERSE-ARG-ORDER-P
[2928]385is T, change the order of arguments; this may be important
[2927]386if we extend the package to non-commutative rings."
[2800]387 `(mapcan #'(lambda (other-term)
[3633]388 (let ((prod (multiply
[2923]389 ,@(cond
[2930]390 (reverse-arg-order-p
[2925]391 `(other-term ,term))
392 (t
393 `(,term other-term))))))
[2800]394 (cond
[3633]395 ((universal-zerop prod) nil)
[2800]396 (t (list prod)))))
397 ,termlist))
[2790]398
[2796]399(defun multiply-termlists (p q order-fn)
[3127]400 "A version of polynomial multiplication, operating
401directly on termlists."
[2787]402 (cond
[2917]403 ((or (endp p) (endp q))
404 ;;p or q is 0 (represented by NIL)
405 nil)
[2789]406 ;; If p= p0+p1 and q=q0+q1 then p*q=p0*q0+p0*q1+p1*q
[2787]407 ((endp (cdr p))
[2918]408 (multiply-term-by-termlist-dropping-zeros (car p) q))
409 ((endp (cdr q))
[2919]410 (multiply-term-by-termlist-dropping-zeros (car q) p t))
411 (t
[3633]412 (cons (multiply (car p) (car q))
[2949]413 (add-termlists
414 (multiply-term-by-termlist-dropping-zeros (car p) (cdr q))
415 (multiply-termlists (cdr p) q order-fn)
416 order-fn)))))
[2793]417
[2803]418(defmethod multiply-by ((self poly) (other poly))
[3014]419 (change-term-order other self)
[2803]420 (setf (poly-termlist self) (multiply-termlists (poly-termlist self)
421 (poly-termlist other)
422 (poly-term-order self)))
423 self)
424
[3804]425(defgeneric add-2 (object1 object2)
426 (:documentation "Non-destructively add OBJECT1 to OBJECT2.")
[3813]427 (:method ((object1 t) (object2 t))
[3804]428 (add-to (copy-instance object1) (copy-instance object2))))
[3374]429
[3803]430(defun add (&rest summands)
431 "Non-destructively adds list SUMMANDS."
432 (cond ((endp summands) 0)
[3818]433 (t (reduce #'add-2 summands))))
[3803]434
[3634]435(defun subtract (minuend &rest subtrahends)
[3427]436 "Non-destructively subtract MINUEND and SUBTRAHENDS."
[3851]437 (cond ((endp subtrahends) (unary-minus minuend))
438 (t (subtract-from (copy-instance minuend) (reduce #'add subtrahends)))))
[3374]439
[3062]440(defmethod left-tensor-product-by ((self poly) (other monom))
441 (setf (poly-termlist self)
442 (mapcan #'(lambda (term)
443 (let ((prod (left-tensor-product-by term other)))
444 (cond
[3640]445 ((universal-zerop prod) nil)
[3062]446 (t (list prod)))))
447 (poly-termlist self)))
[3249]448 (incf (poly-dimension self) (monom-dimension other))
[3062]449 self)
[3044]450
[3062]451(defmethod right-tensor-product-by ((self poly) (other monom))
452 (setf (poly-termlist self)
453 (mapcan #'(lambda (term)
454 (let ((prod (right-tensor-product-by term other)))
455 (cond
[3640]456 ((universal-zerop prod) nil)
[3062]457 (t (list prod)))))
458 (poly-termlist self)))
[3249]459 (incf (poly-dimension self) (monom-dimension other))
[3062]460 self)
461
462
[3084]463(defun standard-extension (plist &aux (k (length plist)) (i 0))
[2716]464 "Calculate [U1*P1,U2*P2,...,UK*PK], where PLIST=[P1,P2,...,PK]
[3060]465is a list of polynomials. Destructively modifies PLIST elements."
[3061]466 (mapc #'(lambda (poly)
[3085]467 (left-tensor-product-by
468 poly
469 (prog1
470 (make-monom-variable k i)
471 (incf i))))
[3061]472 plist))
[52]473
[3087]474(defun standard-extension-1 (plist
475 &aux
[3096]476 (plist (standard-extension plist))
[3087]477 (nvars (poly-dimension (car plist))))
[3081]478 "Calculate [U1*P1-1,U2*P2-1,...,UK*PK-1], where PLIST=[P1,P2,...,PK].
[3087]479Firstly, new K variables U1, U2, ..., UK, are inserted into each
480polynomial. Subsequently, P1, P2, ..., PK are destructively modified
[3105]481tantamount to replacing PI with UI*PI-1. It assumes that all
[3106]482polynomials have the same dimension, and only the first polynomial
483is examined to determine this dimension."
[3089]484 ;; Implementation note: we use STANDARD-EXTENSION and then subtract
485 ;; 1 from each polynomial; since UI*PI has no constant term,
486 ;; we just need to append the constant term at the end
487 ;; of each termlist.
[3064]488 (flet ((subtract-1 (p)
[3641]489 (poly-append-term p (make-instance 'term :dimension nvars :coeff -1))))
[3083]490 (setf plist (mapc #'subtract-1 plist)))
[3077]491 plist)
[52]492
493
[3107]494(defun standard-sum (plist
495 &aux
496 (plist (standard-extension plist))
497 (nvars (poly-dimension (car plist))))
[3087]498 "Calculate the polynomial U1*P1+U2*P2+...+UK*PK-1, where PLIST=[P1,P2,...,PK].
499Firstly, new K variables, U1, U2, ..., UK, are inserted into each
500polynomial. Subsequently, P1, P2, ..., PK are destructively modified
501tantamount to replacing PI with UI*PI, and the resulting polynomials
[3117]502are added. Finally, 1 is subtracted. It should be noted that the term
503order is not modified, which is equivalent to using a lexicographic
504order on the first K variables."
[3107]505 (flet ((subtract-1 (p)
[3641]506 (poly-append-term p (make-instance 'term :dimension nvars :coeff -1))))
[3108]507 (subtract-1
508 (make-instance
509 'poly
[3115]510 :termlist (apply #'nconc (mapcar #'poly-termlist plist))))))
[52]511
[3653]512(defgeneric universal-ezgcd (x y)
513 (:documentation "Solves the diophantine system: X=C*X1, Y=C*X2,
514C=GCD(X,Y). It returns C, X1 and Y1. The result may be obtained by
515the Euclidean algorithm.")
516 (:method ((x integer) (y integer)
517 &aux (c (gcd x y)))
518 (values c (/ x c) (/ y c)))
519 )
520
[3655]521(defgeneric s-polynomial (object1 object2)
[3651]522 (:documentation "Yields the S-polynomial of OBJECT1 and OBJECT2.")
523 (:method ((f poly) (g poly))
524 (let* ((lcm (universal-lcm (leading-monomial f) (leading-monomial g)))
525 (mf (divide lcm (leading-monomial f)))
526 (mg (divide lcm (leading-monomial g))))
527 (multiple-value-bind (c cf cg)
[3652]528 (universal-ezgcd (leading-coefficient f) (leading-coefficient g))
[3651]529 (declare (ignore c))
530 (subtract
[3673]531 (multiply f (change-class mf 'term :coeff cg))
532 (multiply g (change-class mg 'term :coeff cf)))))))
[3651]533
[3676]534(defgeneric poly-content (object)
535 (:documentation "Greatest common divisor of the coefficients of the polynomial object OBJECT.")
[3677]536 (:method ((self poly))
537 (reduce #'universal-gcd
[3679]538 (mapcar #'term-coeff (rest (poly-termlist self)))
539 :initial-value (leading-coefficient self))))
[3676]540
[3684]541(defun poly-primitive-part (object)
[3685]542 "Divide polynomial OBJECT by gcd of its
[3684]543coefficients. Return the resulting polynomial."
[3688]544 (scalar-divide-by object (poly-content object)))
[3682]545
[3700]546(defun poly-insert-variables (self k)
[3697]547 (left-tensor-product-by self (make-instance 'monom :dimension k)))
548
[3698]549(defun saturation-extension (f plist &aux (k (length plist)))
[3708]550 "Calculate [F', U1*P1-1,U2*P2-1,...,UK*PK-1], where
551PLIST=[P1,P2,...,PK] and F' is F with variables U1,U2,...,UK inserted
[3711]552as first K variables. It destructively modifies F and PLIST."
[3700]553 (nconc (mapc #'(lambda (x) (poly-insert-variables x k)) f)
[3699]554 (standard-extension-1 plist)))
[3694]555
[3699]556(defun polysaturation-extension (f plist &aux (k (length plist)))
[3708]557 "Calculate [F', U1*P1+U2*P2+...+UK*PK-1], where PLIST=[P1,P2,...,PK]
558and F' is F with variables U1,U2,...,UK inserted as first K
[3711]559variables. It destructively modifies F and PLIST."
[3700]560 (nconc (mapc #'(lambda (x) (poly-insert-variables x k)) f)
[3703]561 (list (standard-sum plist))))
[3694]562
[3691]563(defun saturation-extension-1 (f p)
[3712]564 "Given family of polynomials F and a polynomial P, calculate [F',
565U*P-1], where F' is F with variable inserted as the first variable. It
566destructively modifies F and P."
[3693]567 (polysaturation-extension f (list p)))
[3713]568
[3717]569(defmethod multiply-by ((object1 number) (object2 poly))
[3720]570 (scalar-multiply-by (copy-instance object2) object1))
[3716]571
[4068]572(defmethod multiply-by ((object1 poly) (object2 number))
573 (scalar-multiply-by (copy-instance object1) object2))
574
[3781]575(defun make-poly-variable (nvars pos &optional (power 1))
576 (change-class (make-monom-variable nvars pos power) 'poly))
[3736]577
[3821]578(defun make-poly-constant (nvars coeff)
579 (change-class (make-term-constant nvars coeff) 'poly))
580
[3713]581(defgeneric universal-expt (x y)
[3721]582 (:documentation "Raises X to power Y.")
[3713]583 (:method ((x number) (y integer)) (expt x y))
584 (:method ((x t) (y integer))
585 (declare (type fixnum y))
586 (cond
587 ((minusp y) (error "universal-expt: Negative exponent."))
588 ((universal-zerop x) (if (zerop y) 1))
589 (t
590 (do ((k 1 (ash k 1))
591 (q x (multiply q q)) ;keep squaring
592 (p 1 (if (not (zerop (logand k y))) (multiply p q) p)))
593 ((> k y) p)
[3778]594 (declare (fixnum k)))))))
595
596(defgeneric poly-p (object)
597 (:documentation "Checks if an object is a polynomial.")
[3779]598 (:method ((self poly)) t)
[3778]599 (:method ((self t)) nil))
[3830]600
[4021]601(defmethod ->sexp :before ((self poly) &optional vars)
[3905]602 "Ensures that the number of variables in VARS maches the polynomial dimension of the
603polynomial SELF."
[4027]604 (with-slots (dimension)
605 self
606 (assert (= (length vars) dimension)
[4028]607 nil
[4027]608 "Number of variables ~S does not match the dimension ~S"
609 vars dimension)))
[3904]610
[4021]611(defmethod ->sexp ((self poly) &optional vars)
[3905]612 "Converts a polynomial SELF to a sexp."
[4036]613 (let ((m (mapcar #'(lambda (x) (->sexp x vars))
[3830]614 (poly-termlist self))))
[4053]615 (cond ((endp m) 0)
[4036]616 ((endp (cdr m)) (car m))
617 (t (cons '+ m)))))
[3899]618
[3903]619(defparameter +list-marker+ :[
620 "A sexp with this head is considered a list of polynomials.")
621
[4021]622(defmethod ->sexp ((self cons) &optional vars)
[3906]623 (assert (eql (car self) +list-marker+))
[4021]624 (cons +list-marker+ (mapcar #'(lambda (p) (->sexp p vars)) (cdr self))))
[3906]625
626
[3899]627(defun poly-eval (expr vars order)
628 "Evaluate Lisp form EXPR to a polynomial or a list of polynomials in
629variables VARS. Return the resulting polynomial or list of
630polynomials. Standard arithmetical operators in form EXPR are
631replaced with their analogues in the ring of polynomials, and the
632resulting expression is evaluated, resulting in a polynomial or a list
633of polynomials in internal form. A similar operation in another computer
634algebra system could be called 'expand' or so."
635 (labels ((p-eval (p) (poly-eval p vars order))
636 (p-eval-list (plist) (mapcar #'p-eval plist)))
637 (cond
638 ((eq expr 0)
639 (make-instance 'poly :dimension (length vars)))
640 ((member expr vars :test #'equalp)
641 (let ((pos (position expr vars :test #'equalp)))
642 (make-poly-variable (length vars) pos)))
643 ((atom expr)
[4015]644 (make-poly-constant (length vars) expr))
[3899]645 ((eq (car expr) +list-marker+)
646 (cons +list-marker+ (p-eval-list (cdr expr))))
647 (t
648 (case (car expr)
649 (+ (reduce #'add (p-eval-list (cdr expr))))
650 (- (apply #'subtract (p-eval-list (cdr expr))))
651 (*
652 (if (endp (cddr expr)) ;unary
653 (p-eval (cadr expr))
654 (reduce #'multiply (p-eval-list (cdr expr)))))
655 (/
656 ;; A polynomial can be divided by a scalar
657 (cond
658 ((endp (cddr expr))
659 ;; A special case (/ ?), the inverse
660 (divide (cadr expr)))
661 (t
662 (let ((num (p-eval (cadr expr)))
[4016]663 (denom-inverse (apply #'divide (mapcar #'p-eval (cddr expr)))))
[3899]664 (multiply denom-inverse num)))))
665 (expt
666 (cond
667 ((member (cadr expr) vars :test #'equalp)
668 ;;Special handling of (expt var pow)
669 (let ((pos (position (cadr expr) vars :test #'equalp)))
670 (make-poly-variable (length vars) pos (caddr expr))))
671 ((not (and (integerp (caddr expr)) (plusp (caddr expr))))
672 ;; Negative power means division in coefficient ring
673 ;; Non-integer power means non-polynomial coefficient
674 expr)
675 (t (universal-expt (p-eval (cadr expr)) (caddr expr)))))
676 (otherwise
[4017]677 (error "Cannot evaluate as polynomial: ~A" expr)))))))
[4053]678
679(defgeneric make-zero-for (self)
680 (:method ((self poly))
681 (make-instance 'poly :dimension (poly-dimension self))))
682
683(defgeneric make-unit-for (self)
684 (:method ((self poly))
685 (make-poly-constant (poly-dimension self) 1)))
[4057]686
[4068]687(defgeneric poly-reverse (self)
[4061]688 (:documentation "Reverse the order of terms in a polynomial SELF.")
[4057]689 (:method ((self poly))
690 (with-slots (termlist)
691 self
[4060]692 (setf termlist (nreverse termlist)))
[4057]693 self))
694
695
[4053]696
Note: See TracBrowser for help on using the repository browser.