| 1 | ;;----------------------------------------------------------------
|
---|
| 2 | ;;; -*- Mode: Lisp -*-
|
---|
| 3 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 4 | ;;;
|
---|
| 5 | ;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
|
---|
| 6 | ;;;
|
---|
| 7 | ;;; This program is free software; you can redistribute it and/or modify
|
---|
| 8 | ;;; it under the terms of the GNU General Public License as published by
|
---|
| 9 | ;;; the Free Software Foundation; either version 2 of the License, or
|
---|
| 10 | ;;; (at your option) any later version.
|
---|
| 11 | ;;;
|
---|
| 12 | ;;; This program is distributed in the hope that it will be useful,
|
---|
| 13 | ;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | ;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | ;;; GNU General Public License for more details.
|
---|
| 16 | ;;;
|
---|
| 17 | ;;; You should have received a copy of the GNU General Public License
|
---|
| 18 | ;;; along with this program; if not, write to the Free Software
|
---|
| 19 | ;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
---|
| 20 | ;;;
|
---|
| 21 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 22 |
|
---|
| 23 | (defpackage "POLYNOMIAL"
|
---|
| 24 | (:use :cl :utils :monom :copy)
|
---|
| 25 | (:export "POLY"
|
---|
| 26 | "POLY-DIMENSION"
|
---|
| 27 | "POLY-TERMLIST"
|
---|
| 28 | "POLY-TERM-ORDER"
|
---|
| 29 | "POLY-INSERT-TERM"
|
---|
| 30 | "SCALAR-MULTIPLY-BY"
|
---|
| 31 | "SCALAR-DIVIDE-BY"
|
---|
| 32 | "LEADING-TERM"
|
---|
| 33 | "LEADING-MONOMIAL"
|
---|
| 34 | "LEADING-COEFFICIENT"
|
---|
| 35 | "SECOND-LEADING-TERM"
|
---|
| 36 | "SECOND-LEADING-MONOMIAL"
|
---|
| 37 | "SECOND-LEADING-COEFFICIENT"
|
---|
| 38 | "ADD-TO"
|
---|
| 39 | "ADD"
|
---|
| 40 | "SUBTRACT-FROM"
|
---|
| 41 | "SUBTRACT"
|
---|
| 42 | "CHANGE-TERM-ORDER"
|
---|
| 43 | "STANDARD-EXTENSION"
|
---|
| 44 | "STANDARD-EXTENSION-1"
|
---|
| 45 | "STANDARD-SUM"
|
---|
| 46 | "SATURATION-EXTENSION"
|
---|
| 47 | "ALIST->POLY"
|
---|
| 48 | "->INFIX"
|
---|
| 49 | "UNIVERSAL-EZGCD"
|
---|
| 50 | "S-POLYNOMIAL"
|
---|
| 51 | "POLY-CONTENT"
|
---|
| 52 | "POLY-PRIMITIVE-PART"
|
---|
| 53 | "SATURATION-EXTENSION-1"
|
---|
| 54 | "MAKE-POLY-VARIABLE"
|
---|
| 55 | "MAKE-POLY-CONSTANT"
|
---|
| 56 | "UNIVERSAL-EXPT"
|
---|
| 57 | "POLY-P"
|
---|
| 58 | "+LIST-MARKER+"
|
---|
| 59 | "POLY-EVAL")
|
---|
| 60 | (:documentation "Implements polynomials. A polynomial is essentially
|
---|
| 61 | a mapping of monomials of the same degree to coefficients. The
|
---|
| 62 | momomials are ordered according to a monomial order."))
|
---|
| 63 |
|
---|
| 64 | (in-package :polynomial)
|
---|
| 65 |
|
---|
| 66 | (proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0)))
|
---|
| 67 |
|
---|
| 68 | (defclass poly ()
|
---|
| 69 | ((dimension :initform nil
|
---|
| 70 | :initarg :dimension
|
---|
| 71 | :accessor poly-dimension
|
---|
| 72 | :documentation "Shared dimension of all terms, the number of variables")
|
---|
| 73 | (termlist :initform nil :initarg :termlist :accessor poly-termlist
|
---|
| 74 | :documentation "List of terms.")
|
---|
| 75 | (order :initform #'lex> :initarg :order :accessor poly-term-order
|
---|
| 76 | :documentation "Monomial/term order."))
|
---|
| 77 | (:default-initargs :dimension nil :termlist nil :order #'lex>)
|
---|
| 78 | (:documentation "A polynomial with a list of terms TERMLIST, ordered
|
---|
| 79 | according to term order ORDER, which defaults to LEX>."))
|
---|
| 80 |
|
---|
| 81 | (defmethod print-object ((self poly) stream)
|
---|
| 82 | (print-unreadable-object (self stream :type t :identity t)
|
---|
| 83 | (with-accessors ((dimension poly-dimension)
|
---|
| 84 | (termlist poly-termlist)
|
---|
| 85 | (order poly-term-order))
|
---|
| 86 | self
|
---|
| 87 | (format stream "DIMENSION=~A TERMLIST=~A ORDER=~A"
|
---|
| 88 | dimension termlist order))))
|
---|
| 89 |
|
---|
| 90 | (defgeneric change-term-order (self other)
|
---|
| 91 | (:documentation "Change term order of SELF to the term order of OTHER.")
|
---|
| 92 | (:method ((self poly) (other poly))
|
---|
| 93 | (unless (eq (poly-term-order self) (poly-term-order other))
|
---|
| 94 | (setf (poly-termlist self) (sort (poly-termlist self) (poly-term-order other))
|
---|
| 95 | (poly-term-order self) (poly-term-order other)))
|
---|
| 96 | self))
|
---|
| 97 |
|
---|
| 98 | (defgeneric poly-insert-term (self term)
|
---|
| 99 | (:documentation "Insert a term TERM into SELF before all other
|
---|
| 100 | terms. Order is not enforced.")
|
---|
| 101 | (:method ((self poly) (term term))
|
---|
| 102 | (cond ((null (poly-dimension self))
|
---|
| 103 | (setf (poly-dimension self) (monom-dimension term)))
|
---|
| 104 | (t (assert (= (poly-dimension self) (monom-dimension term)))))
|
---|
| 105 | (push term (poly-termlist self))
|
---|
| 106 | self))
|
---|
| 107 |
|
---|
| 108 | (defgeneric poly-append-term (self term)
|
---|
| 109 | (:documentation "Append a term TERM to SELF after all other terms. Order is not enforced.")
|
---|
| 110 | (:method ((self poly) (term term))
|
---|
| 111 | (cond ((null (poly-dimension self))
|
---|
| 112 | (setf (poly-dimension self) (monom-dimension term)))
|
---|
| 113 | (t (assert (= (poly-dimension self) (monom-dimension term)))))
|
---|
| 114 | (setf (cdr (last (poly-termlist self))) (list term))
|
---|
| 115 | self))
|
---|
| 116 |
|
---|
| 117 | (defun alist->poly (alist &aux (poly (make-instance 'poly)))
|
---|
| 118 | "It reads polynomial from an alist formatted as ( ... (exponents . coeff) ...).
|
---|
| 119 | It can be used to enter simple polynomials by hand, e.g the polynomial
|
---|
| 120 | in two variables, X and Y, given in standard notation as:
|
---|
| 121 |
|
---|
| 122 | 3*X^2*Y^3+2*Y+7
|
---|
| 123 |
|
---|
| 124 | can be entered as
|
---|
| 125 | (ALIST->POLY '(((2 3) . 3) ((0 1) . 2) ((0 0) . 7))).
|
---|
| 126 |
|
---|
| 127 | NOTE: The primary use is for low-level debugging of the package."
|
---|
| 128 | (dolist (x alist poly)
|
---|
| 129 | (poly-insert-term poly (make-instance 'term :exponents (car x) :coeff (cdr x)))))
|
---|
| 130 |
|
---|
| 131 | (defmethod update-instance-for-different-class :after ((old term) (new poly) &key)
|
---|
| 132 | "Converts OLD of class TERM to a NEW of class POLY, by making it into a 1-element TERMLIST."
|
---|
| 133 | (reinitialize-instance new
|
---|
| 134 | :dimension (monom-dimension old)
|
---|
| 135 | :termlist (list old)))
|
---|
| 136 |
|
---|
| 137 | (defmethod update-instance-for-different-class :after ((old monom) (new poly) &key)
|
---|
| 138 | "Converts OLD of class MONOM to a NEW of class POLY, by making it into a 1-element TERMLIST."
|
---|
| 139 | (reinitialize-instance new
|
---|
| 140 | :dimension (monom-dimension old)
|
---|
| 141 | :termlist (list (change-class old 'term))))
|
---|
| 142 |
|
---|
| 143 | (defmethod universal-equalp ((self poly) (other poly))
|
---|
| 144 | "Implements equality of polynomials."
|
---|
| 145 | (and (eql (poly-dimension self) (poly-dimension other))
|
---|
| 146 | (every #'universal-equalp (poly-termlist self) (poly-termlist other))
|
---|
| 147 | (eq (poly-term-order self) (poly-term-order other))))
|
---|
| 148 |
|
---|
| 149 | (defgeneric leading-term (object)
|
---|
| 150 | (:method ((self poly))
|
---|
| 151 | (car (poly-termlist self)))
|
---|
| 152 | (:documentation "The leading term of a polynomial, or NIL for zero polynomial."))
|
---|
| 153 |
|
---|
| 154 | (defgeneric second-leading-term (object)
|
---|
| 155 | (:method ((self poly))
|
---|
| 156 | (cadar (poly-termlist self)))
|
---|
| 157 | (:documentation "The second leading term of a polynomial, or NIL for a polynomial with at most one term."))
|
---|
| 158 |
|
---|
| 159 | (defgeneric leading-monomial (object)
|
---|
| 160 | (:method ((self poly))
|
---|
| 161 | (change-class (copy-instance (leading-term self)) 'monom))
|
---|
| 162 | (:documentation "The leading monomial of a polynomial, or NIL for zero polynomial."))
|
---|
| 163 |
|
---|
| 164 | (defgeneric second-leading-monomial (object)
|
---|
| 165 | (:method ((self poly))
|
---|
| 166 | (change-class (copy-instance (second-leading-term self)) 'monom))
|
---|
| 167 | (:documentation "The leading monomial of a polynomial, or NIL for zero polynomial."))
|
---|
| 168 |
|
---|
| 169 | (defgeneric leading-coefficient (object)
|
---|
| 170 | (:method ((self poly))
|
---|
| 171 | (term-coeff (leading-term self)))
|
---|
| 172 | (:documentation "The leading coefficient of a polynomial. It signals error for a zero polynomial."))
|
---|
| 173 |
|
---|
| 174 | (defgeneric second-leading-coefficient (object)
|
---|
| 175 | (:method ((self poly))
|
---|
| 176 | (term-coeff (second-leading-term self)))
|
---|
| 177 | (:documentation "The second leading coefficient of a polynomial. It
|
---|
| 178 | signals error for a polynomial with at most one term."))
|
---|
| 179 |
|
---|
| 180 | (defmethod universal-zerop ((self poly))
|
---|
| 181 | "Return T iff SELF is a zero polynomial."
|
---|
| 182 | (null (poly-termlist self)))
|
---|
| 183 |
|
---|
| 184 | (defgeneric poly-length (self)
|
---|
| 185 | (:documentation "Return the number of terms.")
|
---|
| 186 | (:method ((self poly))
|
---|
| 187 | (length (poly-termlist self))))
|
---|
| 188 |
|
---|
| 189 | (defgeneric scalar-multiply-by (self other)
|
---|
| 190 | (:documentation "Multiply vector SELF by a scalar OTHER.")
|
---|
| 191 | (:method ((self poly) other)
|
---|
| 192 | (mapc #'(lambda (term) (setf (term-coeff term) (multiply (term-coeff term) other)))
|
---|
| 193 | (poly-termlist self))
|
---|
| 194 | self))
|
---|
| 195 |
|
---|
| 196 | (defgeneric scalar-divide-by (self other)
|
---|
| 197 | (:documentation "Divide vector SELF by a scalar OTHER.")
|
---|
| 198 | (:method ((self poly) other)
|
---|
| 199 | (mapc #'(lambda (term) (setf (term-coeff term) (divide (term-coeff term) other)))
|
---|
| 200 | (poly-termlist self))
|
---|
| 201 | self))
|
---|
| 202 |
|
---|
| 203 | (defmethod multiply-by ((self poly) (other monom))
|
---|
| 204 | "Multiply a polynomial SELF by OTHER."
|
---|
| 205 | (mapc #'(lambda (term) (multiply-by term other))
|
---|
| 206 | (poly-termlist self))
|
---|
| 207 | self)
|
---|
| 208 |
|
---|
| 209 | (defmethod multiply-by ((self poly) (other term))
|
---|
| 210 | "Multiply a polynomial SELF by OTHER."
|
---|
| 211 | (mapc #'(lambda (term) (multiply-by term other))
|
---|
| 212 | (poly-termlist self))
|
---|
| 213 | self)
|
---|
| 214 |
|
---|
| 215 | (defmacro fast-add/subtract (p q order-fn add/subtract-fn uminus-fn)
|
---|
| 216 | "Return an expression which will efficiently adds/subtracts two
|
---|
| 217 | polynomials, P and Q. The addition/subtraction of coefficients is
|
---|
| 218 | performed by calling ADD/SUBTRACT-FN. If UMINUS-FN is supplied, it is
|
---|
| 219 | used to negate the coefficients of Q which do not have a corresponding
|
---|
| 220 | coefficient in P. The code implements an efficient algorithm to add
|
---|
| 221 | two polynomials represented as sorted lists of terms. The code
|
---|
| 222 | destroys both arguments, reusing the terms to build the result."
|
---|
| 223 | `(macrolet ((lc (x) `(term-coeff (car ,x))))
|
---|
| 224 | (do ((p ,p)
|
---|
| 225 | (q ,q)
|
---|
| 226 | r)
|
---|
| 227 | ((or (endp p) (endp q))
|
---|
| 228 | ;; NOTE: R contains the result in reverse order. Can it
|
---|
| 229 | ;; be more efficient to produce the terms in correct order?
|
---|
| 230 | (unless (endp q)
|
---|
| 231 | ;; Upon subtraction, we must change the sign of
|
---|
| 232 | ;; all coefficients in q
|
---|
| 233 | ,@(when uminus-fn
|
---|
| 234 | `((mapc #'(lambda (x) (setf x (funcall ,uminus-fn x))) q)))
|
---|
| 235 | (setf r (nreconc r q)))
|
---|
| 236 | (unless (endp p)
|
---|
| 237 | (setf r (nreconc r p)))
|
---|
| 238 | r)
|
---|
| 239 | (multiple-value-bind
|
---|
| 240 | (greater-p equal-p)
|
---|
| 241 | (funcall ,order-fn (car p) (car q))
|
---|
| 242 | (cond
|
---|
| 243 | (greater-p
|
---|
| 244 | (rotatef (cdr p) r p)
|
---|
| 245 | )
|
---|
| 246 | (equal-p
|
---|
| 247 | (let ((s (funcall ,add/subtract-fn (lc p) (lc q))))
|
---|
| 248 | (cond
|
---|
| 249 | ((universal-zerop s)
|
---|
| 250 | (setf p (cdr p))
|
---|
| 251 | )
|
---|
| 252 | (t
|
---|
| 253 | (setf (lc p) s)
|
---|
| 254 | (rotatef (cdr p) r p))))
|
---|
| 255 | (setf q (cdr q))
|
---|
| 256 | )
|
---|
| 257 | (t
|
---|
| 258 | ;;Negate the term of Q if UMINUS provided, signallig
|
---|
| 259 | ;;that we are doing subtraction
|
---|
| 260 | ,(when uminus-fn
|
---|
| 261 | `(setf (lc q) (funcall ,uminus-fn (lc q))))
|
---|
| 262 | (rotatef (cdr q) r q))))
|
---|
| 263 | ;;(format t "P:~A~%" p)
|
---|
| 264 | ;;(format t "Q:~A~%" q)
|
---|
| 265 | ;;(format t "R:~A~%" r)
|
---|
| 266 | )))
|
---|
| 267 |
|
---|
| 268 |
|
---|
| 269 |
|
---|
| 270 | (defgeneric add-to (self other)
|
---|
| 271 | (:documentation "Add OTHER to SELF.")
|
---|
| 272 | (:method ((self number) (other number))
|
---|
| 273 | (+ self other))
|
---|
| 274 | (:method ((self poly) (other number))
|
---|
| 275 | (add-to self (make-poly-constant (poly-dimension self) other)))
|
---|
| 276 | (:method ((self number) (other poly))
|
---|
| 277 | (add-to (make-poly-constant (poly-dimension other) self) other)))
|
---|
| 278 |
|
---|
| 279 |
|
---|
| 280 | (defgeneric subtract-from (self other)
|
---|
| 281 | (:documentation "Subtract OTHER from SELF.")
|
---|
| 282 | (:method ((self number) (other number))
|
---|
| 283 | (- self other))
|
---|
| 284 | (:method ((self poly) (other number))
|
---|
| 285 | (subtract-from self (make-poly-constant (poly-dimension self) other))))
|
---|
| 286 |
|
---|
| 287 | #|
|
---|
| 288 |
|
---|
| 289 | (defmacro def-add/subtract-method (add/subtract-method-name
|
---|
| 290 | uminus-method-name
|
---|
| 291 | &optional
|
---|
| 292 | (doc-string nil doc-string-supplied-p))
|
---|
| 293 | "This macro avoids code duplication for two similar operations: ADD-TO and SUBTRACT-FROM."
|
---|
| 294 | `(defmethod ,add/subtract-method-name ((self poly) (other poly))
|
---|
| 295 | ,@(when doc-string-supplied-p `(,doc-string))
|
---|
| 296 | ;; Ensure orders are compatible
|
---|
| 297 | (change-term-order other self)
|
---|
| 298 | (setf (poly-termlist self) (fast-add/subtract
|
---|
| 299 | (poly-termlist self) (poly-termlist other)
|
---|
| 300 | (poly-term-order self)
|
---|
| 301 | #',add/subtract-method-name
|
---|
| 302 | ,(when uminus-method-name `(function ,uminus-method-name))))
|
---|
| 303 | self))
|
---|
| 304 |
|
---|
| 305 | (eval-when (:load-toplevel :execute)
|
---|
| 306 |
|
---|
| 307 | (def-add/subtract-method add-to nil
|
---|
| 308 | "Adds to polynomial SELF another polynomial OTHER.
|
---|
| 309 | This operation destructively modifies both polynomials.
|
---|
| 310 | The result is stored in SELF. This implementation does
|
---|
| 311 | no consing, entirely reusing the sells of SELF and OTHER.")
|
---|
| 312 |
|
---|
| 313 | (def-add/subtract-method subtract-from unary-minus
|
---|
| 314 | "Subtracts from polynomial SELF another polynomial OTHER.
|
---|
| 315 | This operation destructively modifies both polynomials.
|
---|
| 316 | The result is stored in SELF. This implementation does
|
---|
| 317 | no consing, entirely reusing the sells of SELF and OTHER.")
|
---|
| 318 | )
|
---|
| 319 |
|
---|
| 320 | |#
|
---|
| 321 |
|
---|
| 322 | (defmethod unary-minus ((self poly))
|
---|
| 323 | "Destructively modifies the coefficients of the polynomial SELF,
|
---|
| 324 | by changing their sign."
|
---|
| 325 | (mapc #'unary-minus (poly-termlist self))
|
---|
| 326 | self)
|
---|
| 327 |
|
---|
| 328 | (defun add-termlists (p q order-fn)
|
---|
| 329 | "Destructively adds two termlists P and Q ordered according to ORDER-FN."
|
---|
| 330 | (fast-add/subtract p q order-fn #'add-to nil))
|
---|
| 331 |
|
---|
| 332 | (defun subtract-termlists (p q order-fn)
|
---|
| 333 | "Destructively subtracts two termlists P and Q ordered according to ORDER-FN."
|
---|
| 334 | (fast-add/subtract p q order-fn #'subtract-from #'unary-minus))
|
---|
| 335 |
|
---|
| 336 | (defmethod add-to ((self poly) (other poly))
|
---|
| 337 | "Adds to polynomial SELF another polynomial OTHER.
|
---|
| 338 | This operation destructively modifies both polynomials.
|
---|
| 339 | The result is stored in SELF. This implementation does
|
---|
| 340 | no consing, entirely reusing the sells of SELF and OTHER."
|
---|
| 341 | (change-term-order other self)
|
---|
| 342 | (setf (poly-termlist self) (add-termlists
|
---|
| 343 | (poly-termlist self) (poly-termlist other)
|
---|
| 344 | (poly-term-order self)))
|
---|
| 345 | self)
|
---|
| 346 |
|
---|
| 347 |
|
---|
| 348 | (defmethod subtract-from ((self poly) (other poly))
|
---|
| 349 | "Subtracts from polynomial SELF another polynomial OTHER.
|
---|
| 350 | This operation destructively modifies both polynomials.
|
---|
| 351 | The result is stored in SELF. This implementation does
|
---|
| 352 | no consing, entirely reusing the sells of SELF and OTHER."
|
---|
| 353 | (change-term-order other self)
|
---|
| 354 | (setf (poly-termlist self) (subtract-termlists
|
---|
| 355 | (poly-termlist self) (poly-termlist other)
|
---|
| 356 | (poly-term-order self)))
|
---|
| 357 | self)
|
---|
| 358 |
|
---|
| 359 | (defmacro multiply-term-by-termlist-dropping-zeros (term termlist
|
---|
| 360 | &optional (reverse-arg-order-P nil))
|
---|
| 361 | "Multiplies term TERM by a list of term, TERMLIST.
|
---|
| 362 | Takes into accound divisors of zero in the ring, by
|
---|
| 363 | deleting zero terms. Optionally, if REVERSE-ARG-ORDER-P
|
---|
| 364 | is T, change the order of arguments; this may be important
|
---|
| 365 | if we extend the package to non-commutative rings."
|
---|
| 366 | `(mapcan #'(lambda (other-term)
|
---|
| 367 | (let ((prod (multiply
|
---|
| 368 | ,@(cond
|
---|
| 369 | (reverse-arg-order-p
|
---|
| 370 | `(other-term ,term))
|
---|
| 371 | (t
|
---|
| 372 | `(,term other-term))))))
|
---|
| 373 | (cond
|
---|
| 374 | ((universal-zerop prod) nil)
|
---|
| 375 | (t (list prod)))))
|
---|
| 376 | ,termlist))
|
---|
| 377 |
|
---|
| 378 | (defun multiply-termlists (p q order-fn)
|
---|
| 379 | "A version of polynomial multiplication, operating
|
---|
| 380 | directly on termlists."
|
---|
| 381 | (cond
|
---|
| 382 | ((or (endp p) (endp q))
|
---|
| 383 | ;;p or q is 0 (represented by NIL)
|
---|
| 384 | nil)
|
---|
| 385 | ;; If p= p0+p1 and q=q0+q1 then p*q=p0*q0+p0*q1+p1*q
|
---|
| 386 | ((endp (cdr p))
|
---|
| 387 | (multiply-term-by-termlist-dropping-zeros (car p) q))
|
---|
| 388 | ((endp (cdr q))
|
---|
| 389 | (multiply-term-by-termlist-dropping-zeros (car q) p t))
|
---|
| 390 | (t
|
---|
| 391 | (cons (multiply (car p) (car q))
|
---|
| 392 | (add-termlists
|
---|
| 393 | (multiply-term-by-termlist-dropping-zeros (car p) (cdr q))
|
---|
| 394 | (multiply-termlists (cdr p) q order-fn)
|
---|
| 395 | order-fn)))))
|
---|
| 396 |
|
---|
| 397 | (defmethod multiply-by ((self poly) (other poly))
|
---|
| 398 | (change-term-order other self)
|
---|
| 399 | (setf (poly-termlist self) (multiply-termlists (poly-termlist self)
|
---|
| 400 | (poly-termlist other)
|
---|
| 401 | (poly-term-order self)))
|
---|
| 402 | self)
|
---|
| 403 |
|
---|
| 404 | (defgeneric add-2 (object1 object2)
|
---|
| 405 | (:documentation "Non-destructively add OBJECT1 to OBJECT2.")
|
---|
| 406 | (:method ((object1 t) (object2 t))
|
---|
| 407 | (add-to (copy-instance object1) (copy-instance object2))))
|
---|
| 408 |
|
---|
| 409 | (defun add (&rest summands)
|
---|
| 410 | "Non-destructively adds list SUMMANDS."
|
---|
| 411 | (cond ((endp summands) 0)
|
---|
| 412 | (t (reduce #'add-2 summands))))
|
---|
| 413 |
|
---|
| 414 | (defun subtract (minuend &rest subtrahends)
|
---|
| 415 | "Non-destructively subtract MINUEND and SUBTRAHENDS."
|
---|
| 416 | (cond ((endp subtrahends) (unary-minus minuend))
|
---|
| 417 | (t (subtract-from (copy-instance minuend) (reduce #'add subtrahends)))))
|
---|
| 418 |
|
---|
| 419 | (defmethod left-tensor-product-by ((self poly) (other monom))
|
---|
| 420 | (setf (poly-termlist self)
|
---|
| 421 | (mapcan #'(lambda (term)
|
---|
| 422 | (let ((prod (left-tensor-product-by term other)))
|
---|
| 423 | (cond
|
---|
| 424 | ((universal-zerop prod) nil)
|
---|
| 425 | (t (list prod)))))
|
---|
| 426 | (poly-termlist self)))
|
---|
| 427 | (incf (poly-dimension self) (monom-dimension other))
|
---|
| 428 | self)
|
---|
| 429 |
|
---|
| 430 | (defmethod right-tensor-product-by ((self poly) (other monom))
|
---|
| 431 | (setf (poly-termlist self)
|
---|
| 432 | (mapcan #'(lambda (term)
|
---|
| 433 | (let ((prod (right-tensor-product-by term other)))
|
---|
| 434 | (cond
|
---|
| 435 | ((universal-zerop prod) nil)
|
---|
| 436 | (t (list prod)))))
|
---|
| 437 | (poly-termlist self)))
|
---|
| 438 | (incf (poly-dimension self) (monom-dimension other))
|
---|
| 439 | self)
|
---|
| 440 |
|
---|
| 441 |
|
---|
| 442 | (defun standard-extension (plist &aux (k (length plist)) (i 0))
|
---|
| 443 | "Calculate [U1*P1,U2*P2,...,UK*PK], where PLIST=[P1,P2,...,PK]
|
---|
| 444 | is a list of polynomials. Destructively modifies PLIST elements."
|
---|
| 445 | (mapc #'(lambda (poly)
|
---|
| 446 | (left-tensor-product-by
|
---|
| 447 | poly
|
---|
| 448 | (prog1
|
---|
| 449 | (make-monom-variable k i)
|
---|
| 450 | (incf i))))
|
---|
| 451 | plist))
|
---|
| 452 |
|
---|
| 453 | (defun standard-extension-1 (plist
|
---|
| 454 | &aux
|
---|
| 455 | (plist (standard-extension plist))
|
---|
| 456 | (nvars (poly-dimension (car plist))))
|
---|
| 457 | "Calculate [U1*P1-1,U2*P2-1,...,UK*PK-1], where PLIST=[P1,P2,...,PK].
|
---|
| 458 | Firstly, new K variables U1, U2, ..., UK, are inserted into each
|
---|
| 459 | polynomial. Subsequently, P1, P2, ..., PK are destructively modified
|
---|
| 460 | tantamount to replacing PI with UI*PI-1. It assumes that all
|
---|
| 461 | polynomials have the same dimension, and only the first polynomial
|
---|
| 462 | is examined to determine this dimension."
|
---|
| 463 | ;; Implementation note: we use STANDARD-EXTENSION and then subtract
|
---|
| 464 | ;; 1 from each polynomial; since UI*PI has no constant term,
|
---|
| 465 | ;; we just need to append the constant term at the end
|
---|
| 466 | ;; of each termlist.
|
---|
| 467 | (flet ((subtract-1 (p)
|
---|
| 468 | (poly-append-term p (make-instance 'term :dimension nvars :coeff -1))))
|
---|
| 469 | (setf plist (mapc #'subtract-1 plist)))
|
---|
| 470 | plist)
|
---|
| 471 |
|
---|
| 472 |
|
---|
| 473 | (defun standard-sum (plist
|
---|
| 474 | &aux
|
---|
| 475 | (plist (standard-extension plist))
|
---|
| 476 | (nvars (poly-dimension (car plist))))
|
---|
| 477 | "Calculate the polynomial U1*P1+U2*P2+...+UK*PK-1, where PLIST=[P1,P2,...,PK].
|
---|
| 478 | Firstly, new K variables, U1, U2, ..., UK, are inserted into each
|
---|
| 479 | polynomial. Subsequently, P1, P2, ..., PK are destructively modified
|
---|
| 480 | tantamount to replacing PI with UI*PI, and the resulting polynomials
|
---|
| 481 | are added. Finally, 1 is subtracted. It should be noted that the term
|
---|
| 482 | order is not modified, which is equivalent to using a lexicographic
|
---|
| 483 | order on the first K variables."
|
---|
| 484 | (flet ((subtract-1 (p)
|
---|
| 485 | (poly-append-term p (make-instance 'term :dimension nvars :coeff -1))))
|
---|
| 486 | (subtract-1
|
---|
| 487 | (make-instance
|
---|
| 488 | 'poly
|
---|
| 489 | :termlist (apply #'nconc (mapcar #'poly-termlist plist))))))
|
---|
| 490 |
|
---|
| 491 | (defgeneric universal-ezgcd (x y)
|
---|
| 492 | (:documentation "Solves the diophantine system: X=C*X1, Y=C*X2,
|
---|
| 493 | C=GCD(X,Y). It returns C, X1 and Y1. The result may be obtained by
|
---|
| 494 | the Euclidean algorithm.")
|
---|
| 495 | (:method ((x integer) (y integer)
|
---|
| 496 | &aux (c (gcd x y)))
|
---|
| 497 | (values c (/ x c) (/ y c)))
|
---|
| 498 | )
|
---|
| 499 |
|
---|
| 500 | (defgeneric s-polynomial (object1 object2)
|
---|
| 501 | (:documentation "Yields the S-polynomial of OBJECT1 and OBJECT2.")
|
---|
| 502 | (:method ((f poly) (g poly))
|
---|
| 503 | (let* ((lcm (universal-lcm (leading-monomial f) (leading-monomial g)))
|
---|
| 504 | (mf (divide lcm (leading-monomial f)))
|
---|
| 505 | (mg (divide lcm (leading-monomial g))))
|
---|
| 506 | (multiple-value-bind (c cf cg)
|
---|
| 507 | (universal-ezgcd (leading-coefficient f) (leading-coefficient g))
|
---|
| 508 | (declare (ignore c))
|
---|
| 509 | (subtract
|
---|
| 510 | (multiply f (change-class mf 'term :coeff cg))
|
---|
| 511 | (multiply g (change-class mg 'term :coeff cf)))))))
|
---|
| 512 |
|
---|
| 513 | (defgeneric poly-content (object)
|
---|
| 514 | (:documentation "Greatest common divisor of the coefficients of the polynomial object OBJECT.")
|
---|
| 515 | (:method ((self poly))
|
---|
| 516 | (reduce #'universal-gcd
|
---|
| 517 | (mapcar #'term-coeff (rest (poly-termlist self)))
|
---|
| 518 | :initial-value (leading-coefficient self))))
|
---|
| 519 |
|
---|
| 520 | (defun poly-primitive-part (object)
|
---|
| 521 | "Divide polynomial OBJECT by gcd of its
|
---|
| 522 | coefficients. Return the resulting polynomial."
|
---|
| 523 | (scalar-divide-by object (poly-content object)))
|
---|
| 524 |
|
---|
| 525 | (defun poly-insert-variables (self k)
|
---|
| 526 | (left-tensor-product-by self (make-instance 'monom :dimension k)))
|
---|
| 527 |
|
---|
| 528 | (defun saturation-extension (f plist &aux (k (length plist)))
|
---|
| 529 | "Calculate [F', U1*P1-1,U2*P2-1,...,UK*PK-1], where
|
---|
| 530 | PLIST=[P1,P2,...,PK] and F' is F with variables U1,U2,...,UK inserted
|
---|
| 531 | as first K variables. It destructively modifies F and PLIST."
|
---|
| 532 | (nconc (mapc #'(lambda (x) (poly-insert-variables x k)) f)
|
---|
| 533 | (standard-extension-1 plist)))
|
---|
| 534 |
|
---|
| 535 | (defun polysaturation-extension (f plist &aux (k (length plist)))
|
---|
| 536 | "Calculate [F', U1*P1+U2*P2+...+UK*PK-1], where PLIST=[P1,P2,...,PK]
|
---|
| 537 | and F' is F with variables U1,U2,...,UK inserted as first K
|
---|
| 538 | variables. It destructively modifies F and PLIST."
|
---|
| 539 | (nconc (mapc #'(lambda (x) (poly-insert-variables x k)) f)
|
---|
| 540 | (list (standard-sum plist))))
|
---|
| 541 |
|
---|
| 542 | (defun saturation-extension-1 (f p)
|
---|
| 543 | "Given family of polynomials F and a polynomial P, calculate [F',
|
---|
| 544 | U*P-1], where F' is F with variable inserted as the first variable. It
|
---|
| 545 | destructively modifies F and P."
|
---|
| 546 | (polysaturation-extension f (list p)))
|
---|
| 547 |
|
---|
| 548 | (defmethod multiply-by ((object1 number) (object2 poly))
|
---|
| 549 | (scalar-multiply-by (copy-instance object2) object1))
|
---|
| 550 |
|
---|
| 551 | (defun make-poly-variable (nvars pos &optional (power 1))
|
---|
| 552 | (change-class (make-monom-variable nvars pos power) 'poly))
|
---|
| 553 |
|
---|
| 554 | (defun make-poly-constant (nvars coeff)
|
---|
| 555 | (change-class (make-term-constant nvars coeff) 'poly))
|
---|
| 556 |
|
---|
| 557 | (defgeneric universal-expt (x y)
|
---|
| 558 | (:documentation "Raises X to power Y.")
|
---|
| 559 | (:method ((x number) (y integer)) (expt x y))
|
---|
| 560 | (:method ((x t) (y integer))
|
---|
| 561 | (declare (type fixnum y))
|
---|
| 562 | (cond
|
---|
| 563 | ((minusp y) (error "universal-expt: Negative exponent."))
|
---|
| 564 | ((universal-zerop x) (if (zerop y) 1))
|
---|
| 565 | (t
|
---|
| 566 | (do ((k 1 (ash k 1))
|
---|
| 567 | (q x (multiply q q)) ;keep squaring
|
---|
| 568 | (p 1 (if (not (zerop (logand k y))) (multiply p q) p)))
|
---|
| 569 | ((> k y) p)
|
---|
| 570 | (declare (fixnum k)))))))
|
---|
| 571 |
|
---|
| 572 | (defgeneric poly-p (object)
|
---|
| 573 | (:documentation "Checks if an object is a polynomial.")
|
---|
| 574 | (:method ((self poly)) t)
|
---|
| 575 | (:method ((self t)) nil))
|
---|
| 576 |
|
---|
| 577 | (defmethod ->infix :before ((self poly) &optional vars)
|
---|
| 578 | "Ensures that the number of variables in VARS maches the polynomial dimension of the
|
---|
| 579 | polynomial SELF."
|
---|
| 580 | (assert (= (length vars) (poly-dimension self))))
|
---|
| 581 |
|
---|
| 582 | (defmethod ->infix ((self poly) &optional vars)
|
---|
| 583 | "Converts a polynomial SELF to a sexp."
|
---|
| 584 | (cons '+ (mapcar #'(lambda (x) (->infix x vars))
|
---|
| 585 | (poly-termlist self))))
|
---|
| 586 |
|
---|
| 587 | (defparameter +list-marker+ :[
|
---|
| 588 | "A sexp with this head is considered a list of polynomials.")
|
---|
| 589 |
|
---|
| 590 | (defmethod ->infix ((self cons) &optional vars)
|
---|
| 591 | (assert (eql (car self) +list-marker+))
|
---|
| 592 | (cons +list-marker+ (mapcar #'(lambda (p) (->infix p vars)) (cdr self))))
|
---|
| 593 |
|
---|
| 594 |
|
---|
| 595 | (defun poly-eval (expr vars order)
|
---|
| 596 | "Evaluate Lisp form EXPR to a polynomial or a list of polynomials in
|
---|
| 597 | variables VARS. Return the resulting polynomial or list of
|
---|
| 598 | polynomials. Standard arithmetical operators in form EXPR are
|
---|
| 599 | replaced with their analogues in the ring of polynomials, and the
|
---|
| 600 | resulting expression is evaluated, resulting in a polynomial or a list
|
---|
| 601 | of polynomials in internal form. A similar operation in another computer
|
---|
| 602 | algebra system could be called 'expand' or so."
|
---|
| 603 | (labels ((p-eval (p) (poly-eval p vars order))
|
---|
| 604 | (p-eval-scalar (p) (poly-eval p '() order))
|
---|
| 605 | (p-eval-list (plist) (mapcar #'p-eval plist)))
|
---|
| 606 | (cond
|
---|
| 607 | ((eq expr 0)
|
---|
| 608 | (make-instance 'poly :dimension (length vars)))
|
---|
| 609 | ((member expr vars :test #'equalp)
|
---|
| 610 | (let ((pos (position expr vars :test #'equalp)))
|
---|
| 611 | (make-poly-variable (length vars) pos)))
|
---|
| 612 | ((atom expr)
|
---|
| 613 | expr)
|
---|
| 614 | ((eq (car expr) +list-marker+)
|
---|
| 615 | (cons +list-marker+ (p-eval-list (cdr expr))))
|
---|
| 616 | (t
|
---|
| 617 | (case (car expr)
|
---|
| 618 | (+ (reduce #'add (p-eval-list (cdr expr))))
|
---|
| 619 | (- (apply #'subtract (p-eval-list (cdr expr))))
|
---|
| 620 | (*
|
---|
| 621 | (if (endp (cddr expr)) ;unary
|
---|
| 622 | (p-eval (cadr expr))
|
---|
| 623 | (reduce #'multiply (p-eval-list (cdr expr)))))
|
---|
| 624 | (/
|
---|
| 625 | ;; A polynomial can be divided by a scalar
|
---|
| 626 | (cond
|
---|
| 627 | ((endp (cddr expr))
|
---|
| 628 | ;; A special case (/ ?), the inverse
|
---|
| 629 | (divide (cadr expr)))
|
---|
| 630 | (t
|
---|
| 631 | (let ((num (p-eval (cadr expr)))
|
---|
| 632 | (denom-inverse (apply #'divide (mapcar #'p-eval-scalar (cddr expr)))))
|
---|
| 633 | (multiply denom-inverse num)))))
|
---|
| 634 | (expt
|
---|
| 635 | (cond
|
---|
| 636 | ((member (cadr expr) vars :test #'equalp)
|
---|
| 637 | ;;Special handling of (expt var pow)
|
---|
| 638 | (let ((pos (position (cadr expr) vars :test #'equalp)))
|
---|
| 639 | (make-poly-variable (length vars) pos (caddr expr))))
|
---|
| 640 | ((not (and (integerp (caddr expr)) (plusp (caddr expr))))
|
---|
| 641 | ;; Negative power means division in coefficient ring
|
---|
| 642 | ;; Non-integer power means non-polynomial coefficient
|
---|
| 643 | expr)
|
---|
| 644 | (t (universal-expt (p-eval (cadr expr)) (caddr expr)))))
|
---|
| 645 | (otherwise
|
---|
| 646 | expr))))))
|
---|