[3400] | 1 | ;;----------------------------------------------------------------
|
---|
| 2 | ;; File: polynomial.lisp
|
---|
| 3 | ;;----------------------------------------------------------------
|
---|
| 4 | ;;
|
---|
| 5 | ;; Author: Marek Rychlik (rychlik@u.arizona.edu)
|
---|
| 6 | ;; Date: Thu Aug 27 09:41:24 2015
|
---|
| 7 | ;; Copying: (C) Marek Rychlik, 2010. All rights reserved.
|
---|
| 8 | ;;
|
---|
| 9 | ;;----------------------------------------------------------------
|
---|
[1201] | 10 | ;;; -*- Mode: Lisp -*-
|
---|
[77] | 11 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 12 | ;;;
|
---|
| 13 | ;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
|
---|
| 14 | ;;;
|
---|
| 15 | ;;; This program is free software; you can redistribute it and/or modify
|
---|
| 16 | ;;; it under the terms of the GNU General Public License as published by
|
---|
| 17 | ;;; the Free Software Foundation; either version 2 of the License, or
|
---|
| 18 | ;;; (at your option) any later version.
|
---|
| 19 | ;;;
|
---|
| 20 | ;;; This program is distributed in the hope that it will be useful,
|
---|
| 21 | ;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 22 | ;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 23 | ;;; GNU General Public License for more details.
|
---|
| 24 | ;;;
|
---|
| 25 | ;;; You should have received a copy of the GNU General Public License
|
---|
| 26 | ;;; along with this program; if not, write to the Free Software
|
---|
| 27 | ;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
---|
| 28 | ;;;
|
---|
| 29 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 30 |
|
---|
[431] | 31 | (defpackage "POLYNOMIAL"
|
---|
[3129] | 32 | (:use :cl :utils :ring :monom :order :term)
|
---|
[2596] | 33 | (:export "POLY"
|
---|
[3270] | 34 | "POLY-DIMENSION"
|
---|
[2596] | 35 | "POLY-TERMLIST"
|
---|
[3016] | 36 | "POLY-TERM-ORDER"
|
---|
[3071] | 37 | "CHANGE-TERM-ORDER"
|
---|
[3099] | 38 | "STANDARD-EXTENSION"
|
---|
[3101] | 39 | "STANDARD-EXTENSION-1"
|
---|
[3109] | 40 | "STANDARD-SUM"
|
---|
[3094] | 41 | "SATURATION-EXTENSION"
|
---|
| 42 | "ALIST->POLY")
|
---|
[3129] | 43 | (:documentation "Implements polynomials."))
|
---|
[143] | 44 |
|
---|
[431] | 45 | (in-package :polynomial)
|
---|
| 46 |
|
---|
[1927] | 47 | (proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0)))
|
---|
[52] | 48 |
|
---|
[2442] | 49 | (defclass poly ()
|
---|
[3253] | 50 | ((dimension :initform nil
|
---|
[3250] | 51 | :initarg :dimension
|
---|
| 52 | :accessor poly-dimension
|
---|
[3242] | 53 | :documentation "Shared dimension of all terms, the number of variables")
|
---|
[3250] | 54 | (termlist :initform nil :initarg :termlist :accessor poly-termlist
|
---|
[2697] | 55 | :documentation "List of terms.")
|
---|
[3250] | 56 | (order :initform #'lex> :initarg :order :accessor poly-term-order
|
---|
[2697] | 57 | :documentation "Monomial/term order."))
|
---|
[3262] | 58 | (:default-initargs :dimension nil :termlist nil :order #'lex>)
|
---|
[2695] | 59 | (:documentation "A polynomial with a list of terms TERMLIST, ordered
|
---|
[2696] | 60 | according to term order ORDER, which defaults to LEX>."))
|
---|
[2442] | 61 |
|
---|
[2471] | 62 | (defmethod print-object ((self poly) stream)
|
---|
[3241] | 63 | (print-unreadable-object (self stream :type t :identity t)
|
---|
[3243] | 64 | (with-accessors ((dimension poly-dimension)
|
---|
| 65 | (termlist poly-termlist)
|
---|
| 66 | (order poly-term-order))
|
---|
[3237] | 67 | self
|
---|
[3244] | 68 | (format stream "DIMENSION=~A TERMLIST=~A ORDER=~A"
|
---|
| 69 | dimension termlist order))))
|
---|
[2469] | 70 |
|
---|
[3015] | 71 | (defgeneric change-term-order (self other)
|
---|
[3012] | 72 | (:documentation "Change term order of SELF to the term order of OTHER.")
|
---|
[3010] | 73 | (:method ((self poly) (other poly))
|
---|
| 74 | (unless (eq (poly-term-order self) (poly-term-order other))
|
---|
| 75 | (setf (poly-termlist self) (sort (poly-termlist self) (poly-term-order other))
|
---|
| 76 | (poly-term-order self) (poly-term-order other)))
|
---|
[3012] | 77 | self))
|
---|
[3010] | 78 |
|
---|
[3095] | 79 | (defun alist->poly (alist &aux (poly (make-instance 'poly)))
|
---|
[3126] | 80 | "It reads polynomial from an alist formatted as ( ... (exponents . coeff) ...).
|
---|
| 81 | It can be used to enter simple polynomials by hand, e.g the polynomial
|
---|
| 82 | in two variables, X and Y, given in standard notation as:
|
---|
| 83 |
|
---|
| 84 | 3*X^2*Y^3+2*Y+7
|
---|
| 85 |
|
---|
| 86 | can be entered as
|
---|
| 87 | (ALIST->POLY '(((2 3) . 3) ((0 1) . 2) ((0 0) . 7))).
|
---|
| 88 |
|
---|
| 89 | NOTE: The primary use is for low-level debugging of the package."
|
---|
[3099] | 90 | (dolist (x alist poly)
|
---|
[3095] | 91 | (insert-item poly (make-instance 'term :exponents (car x) :coeff (cdr x)))))
|
---|
[3092] | 92 |
|
---|
| 93 |
|
---|
[3402] | 94 | (defmethod update-instance-for-different-class :after ((old term) (new poly) &key)
|
---|
| 95 | "Converts OLD of class TERM to a NEW of class POLY, by making it into a 1-element TERMLIST."
|
---|
| 96 | (reinitialize-instance new
|
---|
| 97 | :dimension (monom-dimension old)
|
---|
| 98 | :termlist (list old)))
|
---|
| 99 |
|
---|
[3401] | 100 | (defmethod update-instance-for-different-class :after ((old monom) (new poly) &key)
|
---|
| 101 | "Converts OLD of class MONOM to a NEW of class POLY, by making it into a 1-element TERMLIST."
|
---|
| 102 | (reinitialize-instance new
|
---|
| 103 | :dimension (monom-dimension old)
|
---|
[3404] | 104 | :termlist (list (change-class old 'term))))
|
---|
[3403] | 105 |
|
---|
[2650] | 106 | (defmethod r-equalp ((self poly) (other poly))
|
---|
[2680] | 107 | "POLY instances are R-EQUALP if they have the same
|
---|
| 108 | order and if all terms are R-EQUALP."
|
---|
[2651] | 109 | (and (every #'r-equalp (poly-termlist self) (poly-termlist other))
|
---|
| 110 | (eq (poly-term-order self) (poly-term-order other))))
|
---|
[2650] | 111 |
|
---|
[2513] | 112 | (defmethod insert-item ((self poly) (item term))
|
---|
[3254] | 113 | (cond ((null (poly-dimension self))
|
---|
[3261] | 114 | (setf (poly-dimension self) (monom-dimension item)))
|
---|
[3258] | 115 | (t (assert (= (poly-dimension self) (monom-dimension item)))))
|
---|
[2513] | 116 | (push item (poly-termlist self))
|
---|
[2514] | 117 | self)
|
---|
[2464] | 118 |
|
---|
[2513] | 119 | (defmethod append-item ((self poly) (item term))
|
---|
[3254] | 120 | (cond ((null (poly-dimension self))
|
---|
[3261] | 121 | (setf (poly-dimension self) (monom-dimension item)))
|
---|
[3258] | 122 | (t (assert (= (poly-dimension self) (monom-dimension item)))))
|
---|
[2513] | 123 | (setf (cdr (last (poly-termlist self))) (list item))
|
---|
| 124 | self)
|
---|
[2466] | 125 |
|
---|
[52] | 126 | ;; Leading term
|
---|
[2442] | 127 | (defgeneric leading-term (object)
|
---|
| 128 | (:method ((self poly))
|
---|
[2525] | 129 | (car (poly-termlist self)))
|
---|
| 130 | (:documentation "The leading term of a polynomial, or NIL for zero polynomial."))
|
---|
[52] | 131 |
|
---|
| 132 | ;; Second term
|
---|
[2442] | 133 | (defgeneric second-leading-term (object)
|
---|
| 134 | (:method ((self poly))
|
---|
[2525] | 135 | (cadar (poly-termlist self)))
|
---|
| 136 | (:documentation "The second leading term of a polynomial, or NIL for a polynomial with at most one term."))
|
---|
[52] | 137 |
|
---|
| 138 | ;; Leading coefficient
|
---|
[2442] | 139 | (defgeneric leading-coefficient (object)
|
---|
| 140 | (:method ((self poly))
|
---|
[3221] | 141 | (scalar-coeff (leading-term self)))
|
---|
[2545] | 142 | (:documentation "The leading coefficient of a polynomial. It signals error for a zero polynomial."))
|
---|
[52] | 143 |
|
---|
| 144 | ;; Second coefficient
|
---|
[2442] | 145 | (defgeneric second-leading-coefficient (object)
|
---|
| 146 | (:method ((self poly))
|
---|
[3221] | 147 | (scalar-coeff (second-leading-term self)))
|
---|
[2906] | 148 | (:documentation "The second leading coefficient of a polynomial. It
|
---|
| 149 | signals error for a polynomial with at most one term."))
|
---|
[52] | 150 |
|
---|
| 151 | ;; Testing for a zero polynomial
|
---|
[2445] | 152 | (defmethod r-zerop ((self poly))
|
---|
| 153 | (null (poly-termlist self)))
|
---|
[52] | 154 |
|
---|
| 155 | ;; The number of terms
|
---|
[2445] | 156 | (defmethod r-length ((self poly))
|
---|
| 157 | (length (poly-termlist self)))
|
---|
[52] | 158 |
|
---|
[2483] | 159 | (defmethod multiply-by ((self poly) (other monom))
|
---|
[2501] | 160 | (mapc #'(lambda (term) (multiply-by term other))
|
---|
| 161 | (poly-termlist self))
|
---|
[2483] | 162 | self)
|
---|
[2469] | 163 |
|
---|
[3120] | 164 | (defmethod multiply-by ((self poly) (other term))
|
---|
| 165 | (mapc #'(lambda (term) (multiply-by term other))
|
---|
| 166 | (poly-termlist self))
|
---|
| 167 | self)
|
---|
| 168 |
|
---|
[2501] | 169 | (defmethod multiply-by ((self poly) (other scalar))
|
---|
[2502] | 170 | (mapc #'(lambda (term) (multiply-by term other))
|
---|
[2501] | 171 | (poly-termlist self))
|
---|
[2487] | 172 | self)
|
---|
| 173 |
|
---|
[2607] | 174 |
|
---|
[2761] | 175 | (defmacro fast-add/subtract (p q order-fn add/subtract-fn uminus-fn)
|
---|
[2755] | 176 | "Return an expression which will efficiently adds/subtracts two
|
---|
| 177 | polynomials, P and Q. The addition/subtraction of coefficients is
|
---|
| 178 | performed by calling ADD/SUBTRACT-METHOD-NAME. If UMINUS-METHOD-NAME
|
---|
| 179 | is supplied, it is used to negate the coefficients of Q which do not
|
---|
[2756] | 180 | have a corresponding coefficient in P. The code implements an
|
---|
| 181 | efficient algorithm to add two polynomials represented as sorted lists
|
---|
| 182 | of terms. The code destroys both arguments, reusing the terms to build
|
---|
| 183 | the result."
|
---|
[3221] | 184 | `(macrolet ((lc (x) `(scalar-coeff (car ,x))))
|
---|
[2742] | 185 | (do ((p ,p)
|
---|
| 186 | (q ,q)
|
---|
| 187 | r)
|
---|
| 188 | ((or (endp p) (endp q))
|
---|
| 189 | ;; NOTE: R contains the result in reverse order. Can it
|
---|
| 190 | ;; be more efficient to produce the terms in correct order?
|
---|
[2774] | 191 | (unless (endp q)
|
---|
[2776] | 192 | ;; Upon subtraction, we must change the sign of
|
---|
| 193 | ;; all coefficients in q
|
---|
[2774] | 194 | ,@(when uminus-fn
|
---|
[2775] | 195 | `((mapc #'(lambda (x) (setf x (funcall ,uminus-fn x))) q)))
|
---|
[2774] | 196 | (setf r (nreconc r q)))
|
---|
[2742] | 197 | r)
|
---|
| 198 | (multiple-value-bind
|
---|
| 199 | (greater-p equal-p)
|
---|
[2766] | 200 | (funcall ,order-fn (car p) (car q))
|
---|
[2742] | 201 | (cond
|
---|
| 202 | (greater-p
|
---|
| 203 | (rotatef (cdr p) r p)
|
---|
| 204 | )
|
---|
| 205 | (equal-p
|
---|
[2766] | 206 | (let ((s (funcall ,add/subtract-fn (lc p) (lc q))))
|
---|
[2742] | 207 | (cond
|
---|
| 208 | ((r-zerop s)
|
---|
| 209 | (setf p (cdr p))
|
---|
| 210 | )
|
---|
| 211 | (t
|
---|
| 212 | (setf (lc p) s)
|
---|
| 213 | (rotatef (cdr p) r p))))
|
---|
| 214 | (setf q (cdr q))
|
---|
| 215 | )
|
---|
| 216 | (t
|
---|
[2743] | 217 | ;;Negate the term of Q if UMINUS provided, signallig
|
---|
| 218 | ;;that we are doing subtraction
|
---|
[2908] | 219 | ,(when uminus-fn
|
---|
| 220 | `(setf (lc q) (funcall ,uminus-fn (lc q))))
|
---|
[2743] | 221 | (rotatef (cdr q) r q)))))))
|
---|
[2585] | 222 |
|
---|
[2655] | 223 |
|
---|
[2763] | 224 | (defmacro def-add/subtract-method (add/subtract-method-name
|
---|
[2752] | 225 | uminus-method-name
|
---|
| 226 | &optional
|
---|
[2913] | 227 | (doc-string nil doc-string-supplied-p))
|
---|
[2615] | 228 | "This macro avoids code duplication for two similar operations: ADD-TO and SUBTRACT-FROM."
|
---|
[2749] | 229 | `(defmethod ,add/subtract-method-name ((self poly) (other poly))
|
---|
[2615] | 230 | ,@(when doc-string-supplied-p `(,doc-string))
|
---|
[2769] | 231 | ;; Ensure orders are compatible
|
---|
[3015] | 232 | (change-term-order other self)
|
---|
[2772] | 233 | (setf (poly-termlist self) (fast-add/subtract
|
---|
| 234 | (poly-termlist self) (poly-termlist other)
|
---|
| 235 | (poly-term-order self)
|
---|
| 236 | #',add/subtract-method-name
|
---|
| 237 | ,(when uminus-method-name `(function ,uminus-method-name))))
|
---|
[2609] | 238 | self))
|
---|
[2487] | 239 |
|
---|
[2916] | 240 | (eval-when (:compile-toplevel :load-toplevel :execute)
|
---|
[2777] | 241 |
|
---|
| 242 | (def-add/subtract-method add-to nil
|
---|
| 243 | "Adds to polynomial SELF another polynomial OTHER.
|
---|
[2610] | 244 | This operation destructively modifies both polynomials.
|
---|
| 245 | The result is stored in SELF. This implementation does
|
---|
[2752] | 246 | no consing, entirely reusing the sells of SELF and OTHER.")
|
---|
[2609] | 247 |
|
---|
[2777] | 248 | (def-add/subtract-method subtract-from unary-minus
|
---|
[2753] | 249 | "Subtracts from polynomial SELF another polynomial OTHER.
|
---|
[2610] | 250 | This operation destructively modifies both polynomials.
|
---|
| 251 | The result is stored in SELF. This implementation does
|
---|
[2752] | 252 | no consing, entirely reusing the sells of SELF and OTHER.")
|
---|
[2916] | 253 | )
|
---|
[2777] | 254 |
|
---|
[2691] | 255 | (defmethod unary-minus ((self poly))
|
---|
[2694] | 256 | "Destructively modifies the coefficients of the polynomial SELF,
|
---|
| 257 | by changing their sign."
|
---|
[2692] | 258 | (mapc #'unary-minus (poly-termlist self))
|
---|
[2683] | 259 | self)
|
---|
[52] | 260 |
|
---|
[2795] | 261 | (defun add-termlists (p q order-fn)
|
---|
[2794] | 262 | "Destructively adds two termlists P and Q ordered according to ORDER-FN."
|
---|
[2917] | 263 | (fast-add/subtract p q order-fn #'add-to nil))
|
---|
[2794] | 264 |
|
---|
[2800] | 265 | (defmacro multiply-term-by-termlist-dropping-zeros (term termlist
|
---|
[2927] | 266 | &optional (reverse-arg-order-P nil))
|
---|
[2799] | 267 | "Multiplies term TERM by a list of term, TERMLIST.
|
---|
[2792] | 268 | Takes into accound divisors of zero in the ring, by
|
---|
[2927] | 269 | deleting zero terms. Optionally, if REVERSE-ARG-ORDER-P
|
---|
[2928] | 270 | is T, change the order of arguments; this may be important
|
---|
[2927] | 271 | if we extend the package to non-commutative rings."
|
---|
[2800] | 272 | `(mapcan #'(lambda (other-term)
|
---|
[2907] | 273 | (let ((prod (r*
|
---|
[2923] | 274 | ,@(cond
|
---|
[2930] | 275 | (reverse-arg-order-p
|
---|
[2925] | 276 | `(other-term ,term))
|
---|
| 277 | (t
|
---|
| 278 | `(,term other-term))))))
|
---|
[2800] | 279 | (cond
|
---|
| 280 | ((r-zerop prod) nil)
|
---|
| 281 | (t (list prod)))))
|
---|
| 282 | ,termlist))
|
---|
[2790] | 283 |
|
---|
[2796] | 284 | (defun multiply-termlists (p q order-fn)
|
---|
[3127] | 285 | "A version of polynomial multiplication, operating
|
---|
| 286 | directly on termlists."
|
---|
[2787] | 287 | (cond
|
---|
[2917] | 288 | ((or (endp p) (endp q))
|
---|
| 289 | ;;p or q is 0 (represented by NIL)
|
---|
| 290 | nil)
|
---|
[2789] | 291 | ;; If p= p0+p1 and q=q0+q1 then p*q=p0*q0+p0*q1+p1*q
|
---|
[2787] | 292 | ((endp (cdr p))
|
---|
[2918] | 293 | (multiply-term-by-termlist-dropping-zeros (car p) q))
|
---|
| 294 | ((endp (cdr q))
|
---|
[2919] | 295 | (multiply-term-by-termlist-dropping-zeros (car q) p t))
|
---|
| 296 | (t
|
---|
[2948] | 297 | (cons (r* (car p) (car q))
|
---|
[2949] | 298 | (add-termlists
|
---|
| 299 | (multiply-term-by-termlist-dropping-zeros (car p) (cdr q))
|
---|
| 300 | (multiply-termlists (cdr p) q order-fn)
|
---|
| 301 | order-fn)))))
|
---|
[2793] | 302 |
|
---|
[2803] | 303 | (defmethod multiply-by ((self poly) (other poly))
|
---|
[3014] | 304 | (change-term-order other self)
|
---|
[2803] | 305 | (setf (poly-termlist self) (multiply-termlists (poly-termlist self)
|
---|
| 306 | (poly-termlist other)
|
---|
| 307 | (poly-term-order self)))
|
---|
| 308 | self)
|
---|
| 309 |
|
---|
[3405] | 310 | (defmethod r+ ((poly1 poly) poly2)
|
---|
[3374] | 311 | "Non-destructively add POLY1 by POLY2."
|
---|
[3405] | 312 | (add-to (copy-instance POLY1) (change-class (copy-instance POLY2) 'poly)))
|
---|
[3374] | 313 |
|
---|
[3405] | 314 | (defmethod r- ((poly1 poly) poly2)
|
---|
[3376] | 315 | "Non-destructively subtract POLY1 and POLY2."
|
---|
| 316 | (subtract-from (copy-instance POLY1) (copy-instance POLY2)))
|
---|
[3374] | 317 |
|
---|
[3406] | 318 | (defmethod r+ ((poly1 term) poly2)
|
---|
| 319 | "Non-destructively add POLY1 by POLY2."
|
---|
| 320 | (add-to (change-class (copy-instance POLY1) 'poly)
|
---|
| 321 | (change-class (copy-instance POLY2) 'poly)))
|
---|
| 322 |
|
---|
| 323 | (defmethod r- ((poly1 term) poly2)
|
---|
| 324 | "Non-destructively subtract POLY1 and POLY2."
|
---|
[3408] | 325 | (subtract-from (change-class (copy-instance POLY1) 'poly)
|
---|
| 326 | (change-class (copy-instance POLY2) 'poly)))
|
---|
[3406] | 327 |
|
---|
[3407] | 328 | (defmethod r+ ((poly1 monom) poly2)
|
---|
| 329 | "Non-destructively add POLY1 by POLY2."
|
---|
| 330 | (add-to (change-class (copy-instance POLY1) 'poly)
|
---|
| 331 | (change-class (copy-instance POLY2) 'poly)))
|
---|
| 332 |
|
---|
| 333 | (defmethod r- ((poly1 monom) poly2)
|
---|
| 334 | "Non-destructively subtract POLY1 and POLY2."
|
---|
[3408] | 335 | (subtract-from (change-class (copy-instance POLY1) 'poly)
|
---|
| 336 | (change-class (copy-instance POLY2) 'poly)))
|
---|
[3407] | 337 |
|
---|
[3374] | 338 | (defmethod r* ((poly1 poly) (poly2 poly))
|
---|
[2939] | 339 | "Non-destructively multiply POLY1 by POLY2."
|
---|
| 340 | (multiply-by (copy-instance POLY1) (copy-instance POLY2)))
|
---|
[2916] | 341 |
|
---|
[3044] | 342 | (defmethod left-tensor-product-by ((self poly) (other term))
|
---|
| 343 | (setf (poly-termlist self)
|
---|
| 344 | (mapcan #'(lambda (term)
|
---|
[3047] | 345 | (let ((prod (left-tensor-product-by term other)))
|
---|
[3044] | 346 | (cond
|
---|
| 347 | ((r-zerop prod) nil)
|
---|
| 348 | (t (list prod)))))
|
---|
[3048] | 349 | (poly-termlist self)))
|
---|
[3044] | 350 | self)
|
---|
| 351 |
|
---|
| 352 | (defmethod right-tensor-product-by ((self poly) (other term))
|
---|
[3045] | 353 | (setf (poly-termlist self)
|
---|
| 354 | (mapcan #'(lambda (term)
|
---|
[3046] | 355 | (let ((prod (right-tensor-product-by term other)))
|
---|
[3045] | 356 | (cond
|
---|
| 357 | ((r-zerop prod) nil)
|
---|
| 358 | (t (list prod)))))
|
---|
[3048] | 359 | (poly-termlist self)))
|
---|
[3045] | 360 | self)
|
---|
[3044] | 361 |
|
---|
[3062] | 362 | (defmethod left-tensor-product-by ((self poly) (other monom))
|
---|
| 363 | (setf (poly-termlist self)
|
---|
| 364 | (mapcan #'(lambda (term)
|
---|
| 365 | (let ((prod (left-tensor-product-by term other)))
|
---|
| 366 | (cond
|
---|
| 367 | ((r-zerop prod) nil)
|
---|
| 368 | (t (list prod)))))
|
---|
| 369 | (poly-termlist self)))
|
---|
[3249] | 370 | (incf (poly-dimension self) (monom-dimension other))
|
---|
[3062] | 371 | self)
|
---|
[3044] | 372 |
|
---|
[3062] | 373 | (defmethod right-tensor-product-by ((self poly) (other monom))
|
---|
| 374 | (setf (poly-termlist self)
|
---|
| 375 | (mapcan #'(lambda (term)
|
---|
| 376 | (let ((prod (right-tensor-product-by term other)))
|
---|
| 377 | (cond
|
---|
| 378 | ((r-zerop prod) nil)
|
---|
| 379 | (t (list prod)))))
|
---|
| 380 | (poly-termlist self)))
|
---|
[3249] | 381 | (incf (poly-dimension self) (monom-dimension other))
|
---|
[3062] | 382 | self)
|
---|
| 383 |
|
---|
| 384 |
|
---|
[3084] | 385 | (defun standard-extension (plist &aux (k (length plist)) (i 0))
|
---|
[2716] | 386 | "Calculate [U1*P1,U2*P2,...,UK*PK], where PLIST=[P1,P2,...,PK]
|
---|
[3060] | 387 | is a list of polynomials. Destructively modifies PLIST elements."
|
---|
[3061] | 388 | (mapc #'(lambda (poly)
|
---|
[3085] | 389 | (left-tensor-product-by
|
---|
| 390 | poly
|
---|
| 391 | (prog1
|
---|
| 392 | (make-monom-variable k i)
|
---|
| 393 | (incf i))))
|
---|
[3061] | 394 | plist))
|
---|
[52] | 395 |
|
---|
[3087] | 396 | (defun standard-extension-1 (plist
|
---|
| 397 | &aux
|
---|
[3096] | 398 | (plist (standard-extension plist))
|
---|
[3087] | 399 | (nvars (poly-dimension (car plist))))
|
---|
[3081] | 400 | "Calculate [U1*P1-1,U2*P2-1,...,UK*PK-1], where PLIST=[P1,P2,...,PK].
|
---|
[3087] | 401 | Firstly, new K variables U1, U2, ..., UK, are inserted into each
|
---|
| 402 | polynomial. Subsequently, P1, P2, ..., PK are destructively modified
|
---|
[3105] | 403 | tantamount to replacing PI with UI*PI-1. It assumes that all
|
---|
[3106] | 404 | polynomials have the same dimension, and only the first polynomial
|
---|
| 405 | is examined to determine this dimension."
|
---|
[3089] | 406 | ;; Implementation note: we use STANDARD-EXTENSION and then subtract
|
---|
| 407 | ;; 1 from each polynomial; since UI*PI has no constant term,
|
---|
| 408 | ;; we just need to append the constant term at the end
|
---|
| 409 | ;; of each termlist.
|
---|
[3064] | 410 | (flet ((subtract-1 (p)
|
---|
[3104] | 411 | (append-item p (make-instance 'term :coeff -1 :dimension nvars))))
|
---|
[3083] | 412 | (setf plist (mapc #'subtract-1 plist)))
|
---|
[3077] | 413 | plist)
|
---|
[52] | 414 |
|
---|
| 415 |
|
---|
[3107] | 416 | (defun standard-sum (plist
|
---|
| 417 | &aux
|
---|
| 418 | (plist (standard-extension plist))
|
---|
| 419 | (nvars (poly-dimension (car plist))))
|
---|
[3087] | 420 | "Calculate the polynomial U1*P1+U2*P2+...+UK*PK-1, where PLIST=[P1,P2,...,PK].
|
---|
| 421 | Firstly, new K variables, U1, U2, ..., UK, are inserted into each
|
---|
| 422 | polynomial. Subsequently, P1, P2, ..., PK are destructively modified
|
---|
| 423 | tantamount to replacing PI with UI*PI, and the resulting polynomials
|
---|
[3117] | 424 | are added. Finally, 1 is subtracted. It should be noted that the term
|
---|
| 425 | order is not modified, which is equivalent to using a lexicographic
|
---|
| 426 | order on the first K variables."
|
---|
[3107] | 427 | (flet ((subtract-1 (p)
|
---|
| 428 | (append-item p (make-instance 'term :coeff -1 :dimension nvars))))
|
---|
[3108] | 429 | (subtract-1
|
---|
| 430 | (make-instance
|
---|
| 431 | 'poly
|
---|
[3115] | 432 | :termlist (apply #'nconc (mapcar #'poly-termlist plist))))))
|
---|
[52] | 433 |
|
---|
[3122] | 434 | #|
|
---|
| 435 |
|
---|
[1477] | 436 | (defun saturation-extension-1 (ring f p)
|
---|
[1497] | 437 | "Calculate [F, U*P-1]. It destructively modifies F."
|
---|
[1908] | 438 | (declare (type ring ring))
|
---|
[1477] | 439 | (polysaturation-extension ring f (list p)))
|
---|
[53] | 440 |
|
---|
[3122] | 441 |
|
---|
[53] | 442 |
|
---|
| 443 |
|
---|
[1189] | 444 | (defun spoly (ring-and-order f g
|
---|
| 445 | &aux
|
---|
| 446 | (ring (ro-ring ring-and-order)))
|
---|
[55] | 447 | "It yields the S-polynomial of polynomials F and G."
|
---|
[1911] | 448 | (declare (type ring-and-order ring-and-order) (type poly f g))
|
---|
[55] | 449 | (let* ((lcm (monom-lcm (poly-lm f) (poly-lm g)))
|
---|
[2913] | 450 | (mf (monom-div lcm (poly-lm f)))
|
---|
| 451 | (mg (monom-div lcm (poly-lm g))))
|
---|
[55] | 452 | (declare (type monom mf mg))
|
---|
| 453 | (multiple-value-bind (c cf cg)
|
---|
| 454 | (funcall (ring-ezgcd ring) (poly-lc f) (poly-lc g))
|
---|
| 455 | (declare (ignore c))
|
---|
| 456 | (poly-sub
|
---|
[1189] | 457 | ring-and-order
|
---|
[55] | 458 | (scalar-times-poly ring cg (monom-times-poly mf f))
|
---|
| 459 | (scalar-times-poly ring cf (monom-times-poly mg g))))))
|
---|
[53] | 460 |
|
---|
| 461 |
|
---|
[55] | 462 | (defun poly-primitive-part (ring p)
|
---|
| 463 | "Divide polynomial P with integer coefficients by gcd of its
|
---|
| 464 | coefficients and return the result."
|
---|
[1912] | 465 | (declare (type ring ring) (type poly p))
|
---|
[55] | 466 | (if (poly-zerop p)
|
---|
| 467 | (values p 1)
|
---|
[2913] | 468 | (let ((c (poly-content ring p)))
|
---|
| 469 | (values (make-poly-from-termlist
|
---|
| 470 | (mapcar
|
---|
| 471 | #'(lambda (x)
|
---|
| 472 | (make-term :monom (term-monom x)
|
---|
| 473 | :coeff (funcall (ring-div ring) (term-coeff x) c)))
|
---|
| 474 | (poly-termlist p))
|
---|
| 475 | (poly-sugar p))
|
---|
| 476 | c))))
|
---|
[55] | 477 |
|
---|
| 478 | (defun poly-content (ring p)
|
---|
| 479 | "Greatest common divisor of the coefficients of the polynomial P. Use the RING structure
|
---|
| 480 | to compute the greatest common divisor."
|
---|
[1913] | 481 | (declare (type ring ring) (type poly p))
|
---|
[55] | 482 | (reduce (ring-gcd ring) (mapcar #'term-coeff (rest (poly-termlist p))) :initial-value (poly-lc p)))
|
---|
[1066] | 483 |
|
---|
[2456] | 484 | |#
|
---|