| 1 | ;;; -*- Mode: Lisp -*-
|
---|
| 2 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 3 | ;;;
|
---|
| 4 | ;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
|
---|
| 5 | ;;;
|
---|
| 6 | ;;; This program is free software; you can redistribute it and/or modify
|
---|
| 7 | ;;; it under the terms of the GNU General Public License as published by
|
---|
| 8 | ;;; the Free Software Foundation; either version 2 of the License, or
|
---|
| 9 | ;;; (at your option) any later version.
|
---|
| 10 | ;;;
|
---|
| 11 | ;;; This program is distributed in the hope that it will be useful,
|
---|
| 12 | ;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 13 | ;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 14 | ;;; GNU General Public License for more details.
|
---|
| 15 | ;;;
|
---|
| 16 | ;;; You should have received a copy of the GNU General Public License
|
---|
| 17 | ;;; along with this program; if not, write to the Free Software
|
---|
| 18 | ;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
---|
| 19 | ;;;
|
---|
| 20 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 21 |
|
---|
| 22 | (defpackage "POLYNOMIAL"
|
---|
| 23 | (:use :cl :utils :ring :monom :order :term)
|
---|
| 24 | (:export "POLY"
|
---|
| 25 | "POLY-TERMLIST"
|
---|
| 26 | "POLY-TERM-ORDER"
|
---|
| 27 | "CHANGE-TERM-ORDER"
|
---|
| 28 | "STANDARD-EXTENSION"
|
---|
| 29 | "STANDARD-EXTENSION-1"
|
---|
| 30 | "STANDARD-SUM"
|
---|
| 31 | "SATURATION-EXTENSION"
|
---|
| 32 | "ALIST->POLY")
|
---|
| 33 | (:documentation "Implements polynomials."))
|
---|
| 34 |
|
---|
| 35 | (in-package :polynomial)
|
---|
| 36 |
|
---|
| 37 | (proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0)))
|
---|
| 38 |
|
---|
| 39 | (defclass poly ()
|
---|
| 40 | ((termlist :initarg :termlist :accessor poly-termlist
|
---|
| 41 | :documentation "List of terms.")
|
---|
| 42 | (order :initarg :order :accessor poly-term-order
|
---|
| 43 | :documentation "Monomial/term order."))
|
---|
| 44 | (:default-initargs :termlist nil :order #'lex>)
|
---|
| 45 | (:documentation "A polynomial with a list of terms TERMLIST, ordered
|
---|
| 46 | according to term order ORDER, which defaults to LEX>."))
|
---|
| 47 |
|
---|
| 48 | (defmethod print-object ((self poly) stream)
|
---|
| 49 | (format stream "#<POLY TERMLIST=~A ORDER=~A>"
|
---|
| 50 | (poly-termlist self)
|
---|
| 51 | (poly-term-order self)))
|
---|
| 52 |
|
---|
| 53 | (defgeneric change-term-order (self other)
|
---|
| 54 | (:documentation "Change term order of SELF to the term order of OTHER.")
|
---|
| 55 | (:method ((self poly) (other poly))
|
---|
| 56 | (unless (eq (poly-term-order self) (poly-term-order other))
|
---|
| 57 | (setf (poly-termlist self) (sort (poly-termlist self) (poly-term-order other))
|
---|
| 58 | (poly-term-order self) (poly-term-order other)))
|
---|
| 59 | self))
|
---|
| 60 |
|
---|
| 61 | (defun alist->poly (alist &aux (poly (make-instance 'poly)))
|
---|
| 62 | "It reads polynomial from an alist formatted as ( ... (exponents . coeff) ...).
|
---|
| 63 | It can be used to enter simple polynomials by hand, e.g the polynomial
|
---|
| 64 | in two variables, X and Y, given in standard notation as:
|
---|
| 65 |
|
---|
| 66 | 3*X^2*Y^3+2*Y+7
|
---|
| 67 |
|
---|
| 68 | can be entered as
|
---|
| 69 | (ALIST->POLY '(((2 3) . 3) ((0 1) . 2) ((0 0) . 7))).
|
---|
| 70 |
|
---|
| 71 | NOTE: The primary use is for low-level debugging of the package."
|
---|
| 72 | (dolist (x alist poly)
|
---|
| 73 | (insert-item poly (make-instance 'term :exponents (car x) :coeff (cdr x)))))
|
---|
| 74 |
|
---|
| 75 |
|
---|
| 76 | (defmethod r-equalp ((self poly) (other poly))
|
---|
| 77 | "POLY instances are R-EQUALP if they have the same
|
---|
| 78 | order and if all terms are R-EQUALP."
|
---|
| 79 | (and (every #'r-equalp (poly-termlist self) (poly-termlist other))
|
---|
| 80 | (eq (poly-term-order self) (poly-term-order other))))
|
---|
| 81 |
|
---|
| 82 | (defmethod insert-item ((self poly) (item term))
|
---|
| 83 | (push item (poly-termlist self))
|
---|
| 84 | self)
|
---|
| 85 |
|
---|
| 86 | (defmethod append-item ((self poly) (item term))
|
---|
| 87 | (setf (cdr (last (poly-termlist self))) (list item))
|
---|
| 88 | self)
|
---|
| 89 |
|
---|
| 90 | ;; Leading term
|
---|
| 91 | (defgeneric leading-term (object)
|
---|
| 92 | (:method ((self poly))
|
---|
| 93 | (car (poly-termlist self)))
|
---|
| 94 | (:documentation "The leading term of a polynomial, or NIL for zero polynomial."))
|
---|
| 95 |
|
---|
| 96 | ;; Second term
|
---|
| 97 | (defgeneric second-leading-term (object)
|
---|
| 98 | (:method ((self poly))
|
---|
| 99 | (cadar (poly-termlist self)))
|
---|
| 100 | (:documentation "The second leading term of a polynomial, or NIL for a polynomial with at most one term."))
|
---|
| 101 |
|
---|
| 102 | ;; Leading coefficient
|
---|
| 103 | (defgeneric leading-coefficient (object)
|
---|
| 104 | (:method ((self poly))
|
---|
| 105 | (r-coeff (leading-term self)))
|
---|
| 106 | (:documentation "The leading coefficient of a polynomial. It signals error for a zero polynomial."))
|
---|
| 107 |
|
---|
| 108 | ;; Second coefficient
|
---|
| 109 | (defgeneric second-leading-coefficient (object)
|
---|
| 110 | (:method ((self poly))
|
---|
| 111 | (r-coeff (second-leading-term self)))
|
---|
| 112 | (:documentation "The second leading coefficient of a polynomial. It
|
---|
| 113 | signals error for a polynomial with at most one term."))
|
---|
| 114 |
|
---|
| 115 | ;; Testing for a zero polynomial
|
---|
| 116 | (defmethod r-zerop ((self poly))
|
---|
| 117 | (null (poly-termlist self)))
|
---|
| 118 |
|
---|
| 119 | ;; The number of terms
|
---|
| 120 | (defmethod r-length ((self poly))
|
---|
| 121 | (length (poly-termlist self)))
|
---|
| 122 |
|
---|
| 123 | (defmethod multiply-by ((self poly) (other monom))
|
---|
| 124 | (mapc #'(lambda (term) (multiply-by term other))
|
---|
| 125 | (poly-termlist self))
|
---|
| 126 | self)
|
---|
| 127 |
|
---|
| 128 | (defmethod multiply-by ((self poly) (other term))
|
---|
| 129 | (mapc #'(lambda (term) (multiply-by term other))
|
---|
| 130 | (poly-termlist self))
|
---|
| 131 | self)
|
---|
| 132 |
|
---|
| 133 | (defmethod multiply-by ((self poly) (other scalar))
|
---|
| 134 | (mapc #'(lambda (term) (multiply-by term other))
|
---|
| 135 | (poly-termlist self))
|
---|
| 136 | self)
|
---|
| 137 |
|
---|
| 138 |
|
---|
| 139 | (defmacro fast-add/subtract (p q order-fn add/subtract-fn uminus-fn)
|
---|
| 140 | "Return an expression which will efficiently adds/subtracts two
|
---|
| 141 | polynomials, P and Q. The addition/subtraction of coefficients is
|
---|
| 142 | performed by calling ADD/SUBTRACT-METHOD-NAME. If UMINUS-METHOD-NAME
|
---|
| 143 | is supplied, it is used to negate the coefficients of Q which do not
|
---|
| 144 | have a corresponding coefficient in P. The code implements an
|
---|
| 145 | efficient algorithm to add two polynomials represented as sorted lists
|
---|
| 146 | of terms. The code destroys both arguments, reusing the terms to build
|
---|
| 147 | the result."
|
---|
| 148 | `(macrolet ((lc (x) `(r-coeff (car ,x))))
|
---|
| 149 | (do ((p ,p)
|
---|
| 150 | (q ,q)
|
---|
| 151 | r)
|
---|
| 152 | ((or (endp p) (endp q))
|
---|
| 153 | ;; NOTE: R contains the result in reverse order. Can it
|
---|
| 154 | ;; be more efficient to produce the terms in correct order?
|
---|
| 155 | (unless (endp q)
|
---|
| 156 | ;; Upon subtraction, we must change the sign of
|
---|
| 157 | ;; all coefficients in q
|
---|
| 158 | ,@(when uminus-fn
|
---|
| 159 | `((mapc #'(lambda (x) (setf x (funcall ,uminus-fn x))) q)))
|
---|
| 160 | (setf r (nreconc r q)))
|
---|
| 161 | r)
|
---|
| 162 | (multiple-value-bind
|
---|
| 163 | (greater-p equal-p)
|
---|
| 164 | (funcall ,order-fn (car p) (car q))
|
---|
| 165 | (cond
|
---|
| 166 | (greater-p
|
---|
| 167 | (rotatef (cdr p) r p)
|
---|
| 168 | )
|
---|
| 169 | (equal-p
|
---|
| 170 | (let ((s (funcall ,add/subtract-fn (lc p) (lc q))))
|
---|
| 171 | (cond
|
---|
| 172 | ((r-zerop s)
|
---|
| 173 | (setf p (cdr p))
|
---|
| 174 | )
|
---|
| 175 | (t
|
---|
| 176 | (setf (lc p) s)
|
---|
| 177 | (rotatef (cdr p) r p))))
|
---|
| 178 | (setf q (cdr q))
|
---|
| 179 | )
|
---|
| 180 | (t
|
---|
| 181 | ;;Negate the term of Q if UMINUS provided, signallig
|
---|
| 182 | ;;that we are doing subtraction
|
---|
| 183 | ,(when uminus-fn
|
---|
| 184 | `(setf (lc q) (funcall ,uminus-fn (lc q))))
|
---|
| 185 | (rotatef (cdr q) r q)))))))
|
---|
| 186 |
|
---|
| 187 |
|
---|
| 188 | (defmacro def-add/subtract-method (add/subtract-method-name
|
---|
| 189 | uminus-method-name
|
---|
| 190 | &optional
|
---|
| 191 | (doc-string nil doc-string-supplied-p))
|
---|
| 192 | "This macro avoids code duplication for two similar operations: ADD-TO and SUBTRACT-FROM."
|
---|
| 193 | `(defmethod ,add/subtract-method-name ((self poly) (other poly))
|
---|
| 194 | ,@(when doc-string-supplied-p `(,doc-string))
|
---|
| 195 | ;; Ensure orders are compatible
|
---|
| 196 | (change-term-order other self)
|
---|
| 197 | (setf (poly-termlist self) (fast-add/subtract
|
---|
| 198 | (poly-termlist self) (poly-termlist other)
|
---|
| 199 | (poly-term-order self)
|
---|
| 200 | #',add/subtract-method-name
|
---|
| 201 | ,(when uminus-method-name `(function ,uminus-method-name))))
|
---|
| 202 | self))
|
---|
| 203 |
|
---|
| 204 | (eval-when (:compile-toplevel :load-toplevel :execute)
|
---|
| 205 |
|
---|
| 206 | (def-add/subtract-method add-to nil
|
---|
| 207 | "Adds to polynomial SELF another polynomial OTHER.
|
---|
| 208 | This operation destructively modifies both polynomials.
|
---|
| 209 | The result is stored in SELF. This implementation does
|
---|
| 210 | no consing, entirely reusing the sells of SELF and OTHER.")
|
---|
| 211 |
|
---|
| 212 | (def-add/subtract-method subtract-from unary-minus
|
---|
| 213 | "Subtracts from polynomial SELF another polynomial OTHER.
|
---|
| 214 | This operation destructively modifies both polynomials.
|
---|
| 215 | The result is stored in SELF. This implementation does
|
---|
| 216 | no consing, entirely reusing the sells of SELF and OTHER.")
|
---|
| 217 | )
|
---|
| 218 |
|
---|
| 219 | (defmethod unary-minus ((self poly))
|
---|
| 220 | "Destructively modifies the coefficients of the polynomial SELF,
|
---|
| 221 | by changing their sign."
|
---|
| 222 | (mapc #'unary-minus (poly-termlist self))
|
---|
| 223 | self)
|
---|
| 224 |
|
---|
| 225 | (defun add-termlists (p q order-fn)
|
---|
| 226 | "Destructively adds two termlists P and Q ordered according to ORDER-FN."
|
---|
| 227 | (fast-add/subtract p q order-fn #'add-to nil))
|
---|
| 228 |
|
---|
| 229 | (defmacro multiply-term-by-termlist-dropping-zeros (term termlist
|
---|
| 230 | &optional (reverse-arg-order-P nil))
|
---|
| 231 | "Multiplies term TERM by a list of term, TERMLIST.
|
---|
| 232 | Takes into accound divisors of zero in the ring, by
|
---|
| 233 | deleting zero terms. Optionally, if REVERSE-ARG-ORDER-P
|
---|
| 234 | is T, change the order of arguments; this may be important
|
---|
| 235 | if we extend the package to non-commutative rings."
|
---|
| 236 | `(mapcan #'(lambda (other-term)
|
---|
| 237 | (let ((prod (r*
|
---|
| 238 | ,@(cond
|
---|
| 239 | (reverse-arg-order-p
|
---|
| 240 | `(other-term ,term))
|
---|
| 241 | (t
|
---|
| 242 | `(,term other-term))))))
|
---|
| 243 | (cond
|
---|
| 244 | ((r-zerop prod) nil)
|
---|
| 245 | (t (list prod)))))
|
---|
| 246 | ,termlist))
|
---|
| 247 |
|
---|
| 248 | (defun multiply-termlists (p q order-fn)
|
---|
| 249 | "A version of polynomial multiplication, operating
|
---|
| 250 | directly on termlists."
|
---|
| 251 | (cond
|
---|
| 252 | ((or (endp p) (endp q))
|
---|
| 253 | ;;p or q is 0 (represented by NIL)
|
---|
| 254 | nil)
|
---|
| 255 | ;; If p= p0+p1 and q=q0+q1 then p*q=p0*q0+p0*q1+p1*q
|
---|
| 256 | ((endp (cdr p))
|
---|
| 257 | (multiply-term-by-termlist-dropping-zeros (car p) q))
|
---|
| 258 | ((endp (cdr q))
|
---|
| 259 | (multiply-term-by-termlist-dropping-zeros (car q) p t))
|
---|
| 260 | (t
|
---|
| 261 | (cons (r* (car p) (car q))
|
---|
| 262 | (add-termlists
|
---|
| 263 | (multiply-term-by-termlist-dropping-zeros (car p) (cdr q))
|
---|
| 264 | (multiply-termlists (cdr p) q order-fn)
|
---|
| 265 | order-fn)))))
|
---|
| 266 |
|
---|
| 267 | (defmethod multiply-by ((self poly) (other poly))
|
---|
| 268 | (change-term-order other self)
|
---|
| 269 | (setf (poly-termlist self) (multiply-termlists (poly-termlist self)
|
---|
| 270 | (poly-termlist other)
|
---|
| 271 | (poly-term-order self)))
|
---|
| 272 | self)
|
---|
| 273 |
|
---|
| 274 | (defmethod r* ((poly1 poly) (poly2 poly))
|
---|
| 275 | "Non-destructively multiply POLY1 by POLY2."
|
---|
| 276 | (multiply-by (copy-instance POLY1) (copy-instance POLY2)))
|
---|
| 277 |
|
---|
| 278 | (defmethod left-tensor-product-by ((self poly) (other term))
|
---|
| 279 | (setf (poly-termlist self)
|
---|
| 280 | (mapcan #'(lambda (term)
|
---|
| 281 | (let ((prod (left-tensor-product-by term other)))
|
---|
| 282 | (cond
|
---|
| 283 | ((r-zerop prod) nil)
|
---|
| 284 | (t (list prod)))))
|
---|
| 285 | (poly-termlist self)))
|
---|
| 286 | self)
|
---|
| 287 |
|
---|
| 288 | (defmethod right-tensor-product-by ((self poly) (other term))
|
---|
| 289 | (setf (poly-termlist self)
|
---|
| 290 | (mapcan #'(lambda (term)
|
---|
| 291 | (let ((prod (right-tensor-product-by term other)))
|
---|
| 292 | (cond
|
---|
| 293 | ((r-zerop prod) nil)
|
---|
| 294 | (t (list prod)))))
|
---|
| 295 | (poly-termlist self)))
|
---|
| 296 | self)
|
---|
| 297 |
|
---|
| 298 | (defmethod left-tensor-product-by ((self poly) (other monom))
|
---|
| 299 | (setf (poly-termlist self)
|
---|
| 300 | (mapcan #'(lambda (term)
|
---|
| 301 | (let ((prod (left-tensor-product-by term other)))
|
---|
| 302 | (cond
|
---|
| 303 | ((r-zerop prod) nil)
|
---|
| 304 | (t (list prod)))))
|
---|
| 305 | (poly-termlist self)))
|
---|
| 306 | self)
|
---|
| 307 |
|
---|
| 308 | (defmethod right-tensor-product-by ((self poly) (other monom))
|
---|
| 309 | (setf (poly-termlist self)
|
---|
| 310 | (mapcan #'(lambda (term)
|
---|
| 311 | (let ((prod (right-tensor-product-by term other)))
|
---|
| 312 | (cond
|
---|
| 313 | ((r-zerop prod) nil)
|
---|
| 314 | (t (list prod)))))
|
---|
| 315 | (poly-termlist self)))
|
---|
| 316 | self)
|
---|
| 317 |
|
---|
| 318 |
|
---|
| 319 | (defun standard-extension (plist &aux (k (length plist)) (i 0))
|
---|
| 320 | "Calculate [U1*P1,U2*P2,...,UK*PK], where PLIST=[P1,P2,...,PK]
|
---|
| 321 | is a list of polynomials. Destructively modifies PLIST elements."
|
---|
| 322 | (mapc #'(lambda (poly)
|
---|
| 323 | (left-tensor-product-by
|
---|
| 324 | poly
|
---|
| 325 | (prog1
|
---|
| 326 | (make-monom-variable k i)
|
---|
| 327 | (incf i))))
|
---|
| 328 | plist))
|
---|
| 329 |
|
---|
| 330 | (defmethod poly-dimension ((poly poly))
|
---|
| 331 | (cond ((r-zerop poly) -1)
|
---|
| 332 | (t (monom-dimension (leading-term poly)))))
|
---|
| 333 |
|
---|
| 334 | (defun standard-extension-1 (plist
|
---|
| 335 | &aux
|
---|
| 336 | (plist (standard-extension plist))
|
---|
| 337 | (nvars (poly-dimension (car plist))))
|
---|
| 338 | "Calculate [U1*P1-1,U2*P2-1,...,UK*PK-1], where PLIST=[P1,P2,...,PK].
|
---|
| 339 | Firstly, new K variables U1, U2, ..., UK, are inserted into each
|
---|
| 340 | polynomial. Subsequently, P1, P2, ..., PK are destructively modified
|
---|
| 341 | tantamount to replacing PI with UI*PI-1. It assumes that all
|
---|
| 342 | polynomials have the same dimension, and only the first polynomial
|
---|
| 343 | is examined to determine this dimension."
|
---|
| 344 | ;; Implementation note: we use STANDARD-EXTENSION and then subtract
|
---|
| 345 | ;; 1 from each polynomial; since UI*PI has no constant term,
|
---|
| 346 | ;; we just need to append the constant term at the end
|
---|
| 347 | ;; of each termlist.
|
---|
| 348 | (flet ((subtract-1 (p)
|
---|
| 349 | (append-item p (make-instance 'term :coeff -1 :dimension nvars))))
|
---|
| 350 | (setf plist (mapc #'subtract-1 plist)))
|
---|
| 351 | plist)
|
---|
| 352 |
|
---|
| 353 |
|
---|
| 354 | (defun standard-sum (plist
|
---|
| 355 | &aux
|
---|
| 356 | (plist (standard-extension plist))
|
---|
| 357 | (nvars (poly-dimension (car plist))))
|
---|
| 358 | "Calculate the polynomial U1*P1+U2*P2+...+UK*PK-1, where PLIST=[P1,P2,...,PK].
|
---|
| 359 | Firstly, new K variables, U1, U2, ..., UK, are inserted into each
|
---|
| 360 | polynomial. Subsequently, P1, P2, ..., PK are destructively modified
|
---|
| 361 | tantamount to replacing PI with UI*PI, and the resulting polynomials
|
---|
| 362 | are added. Finally, 1 is subtracted. It should be noted that the term
|
---|
| 363 | order is not modified, which is equivalent to using a lexicographic
|
---|
| 364 | order on the first K variables."
|
---|
| 365 | (flet ((subtract-1 (p)
|
---|
| 366 | (append-item p (make-instance 'term :coeff -1 :dimension nvars))))
|
---|
| 367 | (subtract-1
|
---|
| 368 | (make-instance
|
---|
| 369 | 'poly
|
---|
| 370 | :termlist (apply #'nconc (mapcar #'poly-termlist plist))))))
|
---|
| 371 |
|
---|
| 372 | #|
|
---|
| 373 |
|
---|
| 374 | (defun saturation-extension-1 (ring f p)
|
---|
| 375 | "Calculate [F, U*P-1]. It destructively modifies F."
|
---|
| 376 | (declare (type ring ring))
|
---|
| 377 | (polysaturation-extension ring f (list p)))
|
---|
| 378 |
|
---|
| 379 |
|
---|
| 380 |
|
---|
| 381 |
|
---|
| 382 | (defun spoly (ring-and-order f g
|
---|
| 383 | &aux
|
---|
| 384 | (ring (ro-ring ring-and-order)))
|
---|
| 385 | "It yields the S-polynomial of polynomials F and G."
|
---|
| 386 | (declare (type ring-and-order ring-and-order) (type poly f g))
|
---|
| 387 | (let* ((lcm (monom-lcm (poly-lm f) (poly-lm g)))
|
---|
| 388 | (mf (monom-div lcm (poly-lm f)))
|
---|
| 389 | (mg (monom-div lcm (poly-lm g))))
|
---|
| 390 | (declare (type monom mf mg))
|
---|
| 391 | (multiple-value-bind (c cf cg)
|
---|
| 392 | (funcall (ring-ezgcd ring) (poly-lc f) (poly-lc g))
|
---|
| 393 | (declare (ignore c))
|
---|
| 394 | (poly-sub
|
---|
| 395 | ring-and-order
|
---|
| 396 | (scalar-times-poly ring cg (monom-times-poly mf f))
|
---|
| 397 | (scalar-times-poly ring cf (monom-times-poly mg g))))))
|
---|
| 398 |
|
---|
| 399 |
|
---|
| 400 | (defun poly-primitive-part (ring p)
|
---|
| 401 | "Divide polynomial P with integer coefficients by gcd of its
|
---|
| 402 | coefficients and return the result."
|
---|
| 403 | (declare (type ring ring) (type poly p))
|
---|
| 404 | (if (poly-zerop p)
|
---|
| 405 | (values p 1)
|
---|
| 406 | (let ((c (poly-content ring p)))
|
---|
| 407 | (values (make-poly-from-termlist
|
---|
| 408 | (mapcar
|
---|
| 409 | #'(lambda (x)
|
---|
| 410 | (make-term :monom (term-monom x)
|
---|
| 411 | :coeff (funcall (ring-div ring) (term-coeff x) c)))
|
---|
| 412 | (poly-termlist p))
|
---|
| 413 | (poly-sugar p))
|
---|
| 414 | c))))
|
---|
| 415 |
|
---|
| 416 | (defun poly-content (ring p)
|
---|
| 417 | "Greatest common divisor of the coefficients of the polynomial P. Use the RING structure
|
---|
| 418 | to compute the greatest common divisor."
|
---|
| 419 | (declare (type ring ring) (type poly p))
|
---|
| 420 | (reduce (ring-gcd ring) (mapcar #'term-coeff (rest (poly-termlist p))) :initial-value (poly-lc p)))
|
---|
| 421 |
|
---|
| 422 | |#
|
---|