close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/polynomial.lisp@ 3095

Last change on this file since 3095 was 3095, checked in by Marek Rychlik, 9 years ago

* empty log message *

File size: 20.3 KB
RevLine 
[1201]1;;; -*- Mode: Lisp -*-
[77]2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
[431]22(defpackage "POLYNOMIAL"
[3055]23 (:use :cl :utils :ring :monom :order :term #| :infix |# )
[2596]24 (:export "POLY"
25 "POLY-TERMLIST"
[3016]26 "POLY-TERM-ORDER"
[3071]27 "CHANGE-TERM-ORDER"
[3094]28 "SATURATION-EXTENSION"
29 "ALIST->POLY")
[2522]30 (:documentation "Implements polynomials"))
[143]31
[431]32(in-package :polynomial)
33
[1927]34(proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0)))
[52]35
[2442]36(defclass poly ()
[2697]37 ((termlist :initarg :termlist :accessor poly-termlist
38 :documentation "List of terms.")
39 (order :initarg :order :accessor poly-term-order
40 :documentation "Monomial/term order."))
[2695]41 (:default-initargs :termlist nil :order #'lex>)
42 (:documentation "A polynomial with a list of terms TERMLIST, ordered
[2696]43according to term order ORDER, which defaults to LEX>."))
[2442]44
[2471]45(defmethod print-object ((self poly) stream)
[2600]46 (format stream "#<POLY TERMLIST=~A ORDER=~A>"
[2595]47 (poly-termlist self)
48 (poly-term-order self)))
[2469]49
[3015]50(defgeneric change-term-order (self other)
[3012]51 (:documentation "Change term order of SELF to the term order of OTHER.")
[3010]52 (:method ((self poly) (other poly))
53 (unless (eq (poly-term-order self) (poly-term-order other))
54 (setf (poly-termlist self) (sort (poly-termlist self) (poly-term-order other))
55 (poly-term-order self) (poly-term-order other)))
[3012]56 self))
[3010]57
[3095]58(defun alist->poly (alist &aux (poly (make-instance 'poly)))
[3093]59 "It reads polynomial from an alist formatted as ( ... (exponents . coeff) ...)."
[3092]60 (dolist (x alist)
[3095]61 (insert-item poly (make-instance 'term :exponents (car x) :coeff (cdr x)))))
[3092]62
63
[2650]64(defmethod r-equalp ((self poly) (other poly))
[2680]65 "POLY instances are R-EQUALP if they have the same
66order and if all terms are R-EQUALP."
[2651]67 (and (every #'r-equalp (poly-termlist self) (poly-termlist other))
68 (eq (poly-term-order self) (poly-term-order other))))
[2650]69
[2513]70(defmethod insert-item ((self poly) (item term))
71 (push item (poly-termlist self))
[2514]72 self)
[2464]73
[2513]74(defmethod append-item ((self poly) (item term))
75 (setf (cdr (last (poly-termlist self))) (list item))
76 self)
[2466]77
[52]78;; Leading term
[2442]79(defgeneric leading-term (object)
80 (:method ((self poly))
[2525]81 (car (poly-termlist self)))
82 (:documentation "The leading term of a polynomial, or NIL for zero polynomial."))
[52]83
84;; Second term
[2442]85(defgeneric second-leading-term (object)
86 (:method ((self poly))
[2525]87 (cadar (poly-termlist self)))
88 (:documentation "The second leading term of a polynomial, or NIL for a polynomial with at most one term."))
[52]89
90;; Leading coefficient
[2442]91(defgeneric leading-coefficient (object)
92 (:method ((self poly))
[2526]93 (r-coeff (leading-term self)))
[2545]94 (:documentation "The leading coefficient of a polynomial. It signals error for a zero polynomial."))
[52]95
96;; Second coefficient
[2442]97(defgeneric second-leading-coefficient (object)
98 (:method ((self poly))
[2526]99 (r-coeff (second-leading-term self)))
[2906]100 (:documentation "The second leading coefficient of a polynomial. It
101 signals error for a polynomial with at most one term."))
[52]102
103;; Testing for a zero polynomial
[2445]104(defmethod r-zerop ((self poly))
105 (null (poly-termlist self)))
[52]106
107;; The number of terms
[2445]108(defmethod r-length ((self poly))
109 (length (poly-termlist self)))
[52]110
[2483]111(defmethod multiply-by ((self poly) (other monom))
[2501]112 (mapc #'(lambda (term) (multiply-by term other))
113 (poly-termlist self))
[2483]114 self)
[2469]115
[2501]116(defmethod multiply-by ((self poly) (other scalar))
[2502]117 (mapc #'(lambda (term) (multiply-by term other))
[2501]118 (poly-termlist self))
[2487]119 self)
120
[2607]121
[2761]122(defmacro fast-add/subtract (p q order-fn add/subtract-fn uminus-fn)
[2755]123 "Return an expression which will efficiently adds/subtracts two
124polynomials, P and Q. The addition/subtraction of coefficients is
125performed by calling ADD/SUBTRACT-METHOD-NAME. If UMINUS-METHOD-NAME
126is supplied, it is used to negate the coefficients of Q which do not
[2756]127have a corresponding coefficient in P. The code implements an
128efficient algorithm to add two polynomials represented as sorted lists
129of terms. The code destroys both arguments, reusing the terms to build
130the result."
[2742]131 `(macrolet ((lc (x) `(r-coeff (car ,x))))
132 (do ((p ,p)
133 (q ,q)
134 r)
135 ((or (endp p) (endp q))
136 ;; NOTE: R contains the result in reverse order. Can it
137 ;; be more efficient to produce the terms in correct order?
[2774]138 (unless (endp q)
[2776]139 ;; Upon subtraction, we must change the sign of
140 ;; all coefficients in q
[2774]141 ,@(when uminus-fn
[2775]142 `((mapc #'(lambda (x) (setf x (funcall ,uminus-fn x))) q)))
[2774]143 (setf r (nreconc r q)))
[2742]144 r)
145 (multiple-value-bind
146 (greater-p equal-p)
[2766]147 (funcall ,order-fn (car p) (car q))
[2742]148 (cond
149 (greater-p
150 (rotatef (cdr p) r p)
151 )
152 (equal-p
[2766]153 (let ((s (funcall ,add/subtract-fn (lc p) (lc q))))
[2742]154 (cond
155 ((r-zerop s)
156 (setf p (cdr p))
157 )
158 (t
159 (setf (lc p) s)
160 (rotatef (cdr p) r p))))
161 (setf q (cdr q))
162 )
163 (t
[2743]164 ;;Negate the term of Q if UMINUS provided, signallig
165 ;;that we are doing subtraction
[2908]166 ,(when uminus-fn
167 `(setf (lc q) (funcall ,uminus-fn (lc q))))
[2743]168 (rotatef (cdr q) r q)))))))
[2585]169
[2655]170
[2763]171(defmacro def-add/subtract-method (add/subtract-method-name
[2752]172 uminus-method-name
173 &optional
[2913]174 (doc-string nil doc-string-supplied-p))
[2615]175 "This macro avoids code duplication for two similar operations: ADD-TO and SUBTRACT-FROM."
[2749]176 `(defmethod ,add/subtract-method-name ((self poly) (other poly))
[2615]177 ,@(when doc-string-supplied-p `(,doc-string))
[2769]178 ;; Ensure orders are compatible
[3015]179 (change-term-order other self)
[2772]180 (setf (poly-termlist self) (fast-add/subtract
181 (poly-termlist self) (poly-termlist other)
182 (poly-term-order self)
183 #',add/subtract-method-name
184 ,(when uminus-method-name `(function ,uminus-method-name))))
[2609]185 self))
[2487]186
[2916]187(eval-when (:compile-toplevel :load-toplevel :execute)
[2777]188
189 (def-add/subtract-method add-to nil
190 "Adds to polynomial SELF another polynomial OTHER.
[2610]191This operation destructively modifies both polynomials.
192The result is stored in SELF. This implementation does
[2752]193no consing, entirely reusing the sells of SELF and OTHER.")
[2609]194
[2777]195 (def-add/subtract-method subtract-from unary-minus
[2753]196 "Subtracts from polynomial SELF another polynomial OTHER.
[2610]197This operation destructively modifies both polynomials.
198The result is stored in SELF. This implementation does
[2752]199no consing, entirely reusing the sells of SELF and OTHER.")
[2610]200
[2916]201 )
[2777]202
[2916]203
204
[2691]205(defmethod unary-minus ((self poly))
[2694]206 "Destructively modifies the coefficients of the polynomial SELF,
207by changing their sign."
[2692]208 (mapc #'unary-minus (poly-termlist self))
[2683]209 self)
[52]210
[2795]211(defun add-termlists (p q order-fn)
[2794]212 "Destructively adds two termlists P and Q ordered according to ORDER-FN."
[2917]213 (fast-add/subtract p q order-fn #'add-to nil))
[2794]214
[2800]215(defmacro multiply-term-by-termlist-dropping-zeros (term termlist
[2927]216 &optional (reverse-arg-order-P nil))
[2799]217 "Multiplies term TERM by a list of term, TERMLIST.
[2792]218Takes into accound divisors of zero in the ring, by
[2927]219deleting zero terms. Optionally, if REVERSE-ARG-ORDER-P
[2928]220is T, change the order of arguments; this may be important
[2927]221if we extend the package to non-commutative rings."
[2800]222 `(mapcan #'(lambda (other-term)
[2907]223 (let ((prod (r*
[2923]224 ,@(cond
[2930]225 (reverse-arg-order-p
[2925]226 `(other-term ,term))
227 (t
228 `(,term other-term))))))
[2800]229 (cond
230 ((r-zerop prod) nil)
231 (t (list prod)))))
232 ,termlist))
[2790]233
[2796]234(defun multiply-termlists (p q order-fn)
[2787]235 (cond
[2917]236 ((or (endp p) (endp q))
237 ;;p or q is 0 (represented by NIL)
238 nil)
[2789]239 ;; If p= p0+p1 and q=q0+q1 then p*q=p0*q0+p0*q1+p1*q
[2787]240 ((endp (cdr p))
[2918]241 (multiply-term-by-termlist-dropping-zeros (car p) q))
242 ((endp (cdr q))
[2919]243 (multiply-term-by-termlist-dropping-zeros (car q) p t))
244 (t
[2948]245 (cons (r* (car p) (car q))
[2949]246 (add-termlists
247 (multiply-term-by-termlist-dropping-zeros (car p) (cdr q))
248 (multiply-termlists (cdr p) q order-fn)
249 order-fn)))))
[2793]250
[2803]251(defmethod multiply-by ((self poly) (other poly))
[3014]252 (change-term-order other self)
[2803]253 (setf (poly-termlist self) (multiply-termlists (poly-termlist self)
254 (poly-termlist other)
255 (poly-term-order self)))
256 self)
257
[2939]258(defmethod r* ((poly1 poly) (poly2 poly))
259 "Non-destructively multiply POLY1 by POLY2."
260 (multiply-by (copy-instance POLY1) (copy-instance POLY2)))
[2916]261
[3044]262(defmethod left-tensor-product-by ((self poly) (other term))
263 (setf (poly-termlist self)
264 (mapcan #'(lambda (term)
[3047]265 (let ((prod (left-tensor-product-by term other)))
[3044]266 (cond
267 ((r-zerop prod) nil)
268 (t (list prod)))))
[3048]269 (poly-termlist self)))
[3044]270 self)
271
272(defmethod right-tensor-product-by ((self poly) (other term))
[3045]273 (setf (poly-termlist self)
274 (mapcan #'(lambda (term)
[3046]275 (let ((prod (right-tensor-product-by term other)))
[3045]276 (cond
277 ((r-zerop prod) nil)
278 (t (list prod)))))
[3048]279 (poly-termlist self)))
[3045]280 self)
[3044]281
[3062]282(defmethod left-tensor-product-by ((self poly) (other monom))
283 (setf (poly-termlist self)
284 (mapcan #'(lambda (term)
285 (let ((prod (left-tensor-product-by term other)))
286 (cond
287 ((r-zerop prod) nil)
288 (t (list prod)))))
289 (poly-termlist self)))
290 self)
[3044]291
[3062]292(defmethod right-tensor-product-by ((self poly) (other monom))
293 (setf (poly-termlist self)
294 (mapcan #'(lambda (term)
295 (let ((prod (right-tensor-product-by term other)))
296 (cond
297 ((r-zerop prod) nil)
298 (t (list prod)))))
299 (poly-termlist self)))
300 self)
301
302
[3084]303(defun standard-extension (plist &aux (k (length plist)) (i 0))
[2716]304 "Calculate [U1*P1,U2*P2,...,UK*PK], where PLIST=[P1,P2,...,PK]
[3060]305is a list of polynomials. Destructively modifies PLIST elements."
[3061]306 (mapc #'(lambda (poly)
[3085]307 (left-tensor-product-by
308 poly
309 (prog1
310 (make-monom-variable k i)
311 (incf i))))
[3061]312 plist))
[52]313
[3091]314(defmethod poly-dimension ((poly poly))
315 (cond ((r-zerop poly) -1)
316 (t (monom-dimension (leading-term poly)))))
317
[3087]318(defun standard-extension-1 (plist
319 &aux
320 (k (length plist))
321 (plist (poly-standard-extension plist))
322 (nvars (poly-dimension (car plist))))
[3081]323 "Calculate [U1*P1-1,U2*P2-1,...,UK*PK-1], where PLIST=[P1,P2,...,PK].
[3087]324Firstly, new K variables U1, U2, ..., UK, are inserted into each
325polynomial. Subsequently, P1, P2, ..., PK are destructively modified
326tantamount to replacing PI with UI*PI-1."
[3089]327 ;; Implementation note: we use STANDARD-EXTENSION and then subtract
328 ;; 1 from each polynomial; since UI*PI has no constant term,
329 ;; we just need to append the constant term at the end
330 ;; of each termlist.
[3064]331 (flet ((subtract-1 (p)
[3083]332 (append-item p (make-instance 'term :coeff -1 :dimension (+ k nvars)))))
333 (setf plist (mapc #'subtract-1 plist)))
[3077]334 plist)
[52]335
336
[3087]337(defun standard-sum (F plist
[1475]338 &aux
339 (k (length plist))
[3079]340 (d (+ k (monom-dimension (poly-lt (car plist)))))
[1494]341 ;; Add k variables to f
[1493]342 (f (poly-list-add-variables f k))
[1495]343 ;; Set PLIST to [U1*P1,U2*P2,...,UK*PK]
[3077]344 (plist (apply #'nconc (poly-standard-extension plist))))
[3087]345 "Calculate the polynomial U1*P1+U2*P2+...+UK*PK-1, where PLIST=[P1,P2,...,PK].
346Firstly, new K variables, U1, U2, ..., UK, are inserted into each
347polynomial. Subsequently, P1, P2, ..., PK are destructively modified
348tantamount to replacing PI with UI*PI, and the resulting polynomials
[3088]349are added. It should be noted that the term order is not modified,
350which is equivalent to using a lexicographic order on the first K
351variables."
[1493]352 (setf (cdr (last (poly-termlist plist)))
[3087]353 ;; Add -1 as the last term
[1845]354 (list (make-term :monom (make-monom :dimension d)
355 :coeff (funcall (ring-uminus ring) (funcall (ring-unit ring))))))
[1493]356 (append f (list plist)))
[52]357
[3076]358#|
359
360
[1477]361(defun saturation-extension-1 (ring f p)
[1497]362 "Calculate [F, U*P-1]. It destructively modifies F."
[1908]363 (declare (type ring ring))
[1477]364 (polysaturation-extension ring f (list p)))
[53]365
366;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
367;;
368;; Evaluation of polynomial (prefix) expressions
369;;
370;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
371
372(defun coerce-coeff (ring expr vars)
373 "Coerce an element of the coefficient ring to a constant polynomial."
374 ;; Modular arithmetic handler by rat
[1908]375 (declare (type ring ring))
[1846]376 (make-poly-from-termlist (list (make-term :monom (make-monom :dimension (length vars))
377 :coeff (funcall (ring-parse ring) expr)))
[53]378 0))
379
[1046]380(defun poly-eval (expr vars
381 &optional
[1668]382 (ring +ring-of-integers+)
[1048]383 (order #'lex>)
[1170]384 (list-marker :[)
[1047]385 &aux
386 (ring-and-order (make-ring-and-order :ring ring :order order)))
[1168]387 "Evaluate Lisp form EXPR to a polynomial or a list of polynomials in
[1208]388variables VARS. Return the resulting polynomial or list of
389polynomials. Standard arithmetical operators in form EXPR are
390replaced with their analogues in the ring of polynomials, and the
391resulting expression is evaluated, resulting in a polynomial or a list
[1209]392of polynomials in internal form. A similar operation in another computer
393algebra system could be called 'expand' or so."
[1909]394 (declare (type ring ring))
[1050]395 (labels ((p-eval (arg) (poly-eval arg vars ring order))
[1140]396 (p-eval-scalar (arg) (poly-eval-scalar arg))
[53]397 (p-eval-list (args) (mapcar #'p-eval args))
[989]398 (p-add (x y) (poly-add ring-and-order x y)))
[53]399 (cond
[1128]400 ((null expr) (error "Empty expression"))
[53]401 ((eql expr 0) (make-poly-zero))
402 ((member expr vars :test #'equalp)
403 (let ((pos (position expr vars :test #'equalp)))
[1657]404 (make-poly-variable ring (length vars) pos)))
[53]405 ((atom expr)
406 (coerce-coeff ring expr vars))
407 ((eq (car expr) list-marker)
408 (cons list-marker (p-eval-list (cdr expr))))
409 (t
410 (case (car expr)
411 (+ (reduce #'p-add (p-eval-list (cdr expr))))
412 (- (case (length expr)
413 (1 (make-poly-zero))
414 (2 (poly-uminus ring (p-eval (cadr expr))))
[989]415 (3 (poly-sub ring-and-order (p-eval (cadr expr)) (p-eval (caddr expr))))
416 (otherwise (poly-sub ring-and-order (p-eval (cadr expr))
[53]417 (reduce #'p-add (p-eval-list (cddr expr)))))))
418 (*
419 (if (endp (cddr expr)) ;unary
420 (p-eval (cdr expr))
[989]421 (reduce #'(lambda (p q) (poly-mul ring-and-order p q)) (p-eval-list (cdr expr)))))
[1106]422 (/
423 ;; A polynomial can be divided by a scalar
[1115]424 (cond
425 ((endp (cddr expr))
[1117]426 ;; A special case (/ ?), the inverse
[1119]427 (coerce-coeff ring (apply (ring-div ring) (cdr expr)) vars))
[1128]428 (t
[1115]429 (let ((num (p-eval (cadr expr)))
[1142]430 (denom-inverse (apply (ring-div ring)
431 (cons (funcall (ring-unit ring))
432 (mapcar #'p-eval-scalar (cddr expr))))))
[1118]433 (scalar-times-poly ring denom-inverse num)))))
[53]434 (expt
435 (cond
436 ((member (cadr expr) vars :test #'equalp)
437 ;;Special handling of (expt var pow)
438 (let ((pos (position (cadr expr) vars :test #'equalp)))
[1657]439 (make-poly-variable ring (length vars) pos (caddr expr))))
[53]440 ((not (and (integerp (caddr expr)) (plusp (caddr expr))))
441 ;; Negative power means division in coefficient ring
442 ;; Non-integer power means non-polynomial coefficient
443 (coerce-coeff ring expr vars))
[989]444 (t (poly-expt ring-and-order (p-eval (cadr expr)) (caddr expr)))))
[53]445 (otherwise
446 (coerce-coeff ring expr vars)))))))
447
[1133]448(defun poly-eval-scalar (expr
449 &optional
[1668]450 (ring +ring-of-integers+)
[1133]451 &aux
452 (order #'lex>))
453 "Evaluate a scalar expression EXPR in ring RING."
[1910]454 (declare (type ring ring))
[1133]455 (poly-lc (poly-eval expr nil ring order)))
456
[1189]457(defun spoly (ring-and-order f g
458 &aux
459 (ring (ro-ring ring-and-order)))
[55]460 "It yields the S-polynomial of polynomials F and G."
[1911]461 (declare (type ring-and-order ring-and-order) (type poly f g))
[55]462 (let* ((lcm (monom-lcm (poly-lm f) (poly-lm g)))
[2913]463 (mf (monom-div lcm (poly-lm f)))
464 (mg (monom-div lcm (poly-lm g))))
[55]465 (declare (type monom mf mg))
466 (multiple-value-bind (c cf cg)
467 (funcall (ring-ezgcd ring) (poly-lc f) (poly-lc g))
468 (declare (ignore c))
469 (poly-sub
[1189]470 ring-and-order
[55]471 (scalar-times-poly ring cg (monom-times-poly mf f))
472 (scalar-times-poly ring cf (monom-times-poly mg g))))))
[53]473
474
[55]475(defun poly-primitive-part (ring p)
476 "Divide polynomial P with integer coefficients by gcd of its
477coefficients and return the result."
[1912]478 (declare (type ring ring) (type poly p))
[55]479 (if (poly-zerop p)
480 (values p 1)
[2913]481 (let ((c (poly-content ring p)))
482 (values (make-poly-from-termlist
483 (mapcar
484 #'(lambda (x)
485 (make-term :monom (term-monom x)
486 :coeff (funcall (ring-div ring) (term-coeff x) c)))
487 (poly-termlist p))
488 (poly-sugar p))
489 c))))
[55]490
491(defun poly-content (ring p)
492 "Greatest common divisor of the coefficients of the polynomial P. Use the RING structure
493to compute the greatest common divisor."
[1913]494 (declare (type ring ring) (type poly p))
[55]495 (reduce (ring-gcd ring) (mapcar #'term-coeff (rest (poly-termlist p))) :initial-value (poly-lc p)))
[1066]496
[1091]497(defun read-infix-form (&key (stream t))
[1066]498 "Parser of infix expressions with integer/rational coefficients
499The parser will recognize two kinds of polynomial expressions:
500
501- polynomials in fully expanded forms with coefficients
502 written in front of symbolic expressions; constants can be optionally
503 enclosed in (); for example, the infix form
504 X^2-Y^2+(-4/3)*U^2*W^3-5
505 parses to
506 (+ (- (EXPT X 2) (EXPT Y 2)) (* (- (/ 4 3)) (EXPT U 2) (EXPT W 3)) (- 5))
507
508- lists of polynomials; for example
509 [X-Y, X^2+3*Z]
510 parses to
511 (:[ (- X Y) (+ (EXPT X 2) (* 3 Z)))
512 where the first symbol [ marks a list of polynomials.
513
514-other infix expressions, for example
515 [(X-Y)*(X+Y)/Z,(X+1)^2]
516parses to:
517 (:[ (/ (* (- X Y) (+ X Y)) Z) (EXPT (+ X 1) 2))
518Currently this function is implemented using M. Kantrowitz's INFIX package."
519 (read-from-string
520 (concatenate 'string
[2913]521 "#I("
522 (with-output-to-string (s)
523 (loop
524 (multiple-value-bind (line eof)
525 (read-line stream t)
526 (format s "~A" line)
527 (when eof (return)))))
528 ")")))
529
[1145]530(defun read-poly (vars &key
531 (stream t)
[1668]532 (ring +ring-of-integers+)
[1145]533 (order #'lex>))
[1067]534 "Reads an expression in prefix form from a stream STREAM.
[1144]535The expression read from the strem should represent a polynomial or a
536list of polynomials in variables VARS, over the ring RING. The
537polynomial or list of polynomials is returned, with terms in each
538polynomial ordered according to monomial order ORDER."
[1146]539 (poly-eval (read-infix-form :stream stream) vars ring order))
[1092]540
[1146]541(defun string->poly (str vars
[1164]542 &optional
[1668]543 (ring +ring-of-integers+)
[1146]544 (order #'lex>))
545 "Converts a string STR to a polynomial in variables VARS."
[1097]546 (with-input-from-string (s str)
[1165]547 (read-poly vars :stream s :ring ring :order order)))
[1095]548
[1143]549(defun poly->alist (p)
550 "Convert a polynomial P to an association list. Thus, the format of the
551returned value is ((MONOM[0] . COEFF[0]) (MONOM[1] . COEFF[1]) ...), where
552MONOM[I] is a list of exponents in the monomial and COEFF[I] is the
553corresponding coefficient in the ring."
[1171]554 (cond
555 ((poly-p p)
556 (mapcar #'term->cons (poly-termlist p)))
557 ((and (consp p) (eq (car p) :[))
[1172]558 (cons :[ (mapcar #'poly->alist (cdr p))))))
[1143]559
[1164]560(defun string->alist (str vars
[2913]561 &optional
562 (ring +ring-of-integers+)
563 (order #'lex>))
[1143]564 "Convert a string STR representing a polynomial or polynomial list to
[1158]565an association list (... (MONOM . COEFF) ...)."
[1166]566 (poly->alist (string->poly str vars ring order)))
[1440]567
568(defun poly-equal-no-sugar-p (p q)
569 "Compare polynomials for equality, ignoring sugar."
[1914]570 (declare (type poly p q))
[1440]571 (equalp (poly-termlist p) (poly-termlist q)))
[1559]572
573(defun poly-set-equal-no-sugar-p (p q)
574 "Compare polynomial sets P and Q for equality, ignoring sugar."
575 (null (set-exclusive-or p q :test #'poly-equal-no-sugar-p )))
[1560]576
577(defun poly-list-equal-no-sugar-p (p q)
578 "Compare polynomial lists P and Q for equality, ignoring sugar."
579 (every #'poly-equal-no-sugar-p p q))
[2456]580|#
Note: See TracBrowser for help on using the repository browser.