close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/polynomial.lisp@ 3081

Last change on this file since 3081 was 3081, checked in by Marek Rychlik, 10 years ago

* empty log message *

File size: 19.5 KB
RevLine 
[1201]1;;; -*- Mode: Lisp -*-
[77]2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
[431]22(defpackage "POLYNOMIAL"
[3055]23 (:use :cl :utils :ring :monom :order :term #| :infix |# )
[2596]24 (:export "POLY"
25 "POLY-TERMLIST"
[3016]26 "POLY-TERM-ORDER"
[3071]27 "CHANGE-TERM-ORDER"
28 "SATURATION-EXTENSION")
[2522]29 (:documentation "Implements polynomials"))
[143]30
[431]31(in-package :polynomial)
32
[1927]33(proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0)))
[52]34
[2442]35(defclass poly ()
[2697]36 ((termlist :initarg :termlist :accessor poly-termlist
37 :documentation "List of terms.")
38 (order :initarg :order :accessor poly-term-order
39 :documentation "Monomial/term order."))
[2695]40 (:default-initargs :termlist nil :order #'lex>)
41 (:documentation "A polynomial with a list of terms TERMLIST, ordered
[2696]42according to term order ORDER, which defaults to LEX>."))
[2442]43
[2471]44(defmethod print-object ((self poly) stream)
[2600]45 (format stream "#<POLY TERMLIST=~A ORDER=~A>"
[2595]46 (poly-termlist self)
47 (poly-term-order self)))
[2469]48
[3015]49(defgeneric change-term-order (self other)
[3012]50 (:documentation "Change term order of SELF to the term order of OTHER.")
[3010]51 (:method ((self poly) (other poly))
52 (unless (eq (poly-term-order self) (poly-term-order other))
53 (setf (poly-termlist self) (sort (poly-termlist self) (poly-term-order other))
54 (poly-term-order self) (poly-term-order other)))
[3012]55 self))
[3010]56
[2650]57(defmethod r-equalp ((self poly) (other poly))
[2680]58 "POLY instances are R-EQUALP if they have the same
59order and if all terms are R-EQUALP."
[2651]60 (and (every #'r-equalp (poly-termlist self) (poly-termlist other))
61 (eq (poly-term-order self) (poly-term-order other))))
[2650]62
[2513]63(defmethod insert-item ((self poly) (item term))
64 (push item (poly-termlist self))
[2514]65 self)
[2464]66
[2513]67(defmethod append-item ((self poly) (item term))
68 (setf (cdr (last (poly-termlist self))) (list item))
69 self)
[2466]70
[52]71;; Leading term
[2442]72(defgeneric leading-term (object)
73 (:method ((self poly))
[2525]74 (car (poly-termlist self)))
75 (:documentation "The leading term of a polynomial, or NIL for zero polynomial."))
[52]76
77;; Second term
[2442]78(defgeneric second-leading-term (object)
79 (:method ((self poly))
[2525]80 (cadar (poly-termlist self)))
81 (:documentation "The second leading term of a polynomial, or NIL for a polynomial with at most one term."))
[52]82
83;; Leading coefficient
[2442]84(defgeneric leading-coefficient (object)
85 (:method ((self poly))
[2526]86 (r-coeff (leading-term self)))
[2545]87 (:documentation "The leading coefficient of a polynomial. It signals error for a zero polynomial."))
[52]88
89;; Second coefficient
[2442]90(defgeneric second-leading-coefficient (object)
91 (:method ((self poly))
[2526]92 (r-coeff (second-leading-term self)))
[2906]93 (:documentation "The second leading coefficient of a polynomial. It
94 signals error for a polynomial with at most one term."))
[52]95
96;; Testing for a zero polynomial
[2445]97(defmethod r-zerop ((self poly))
98 (null (poly-termlist self)))
[52]99
100;; The number of terms
[2445]101(defmethod r-length ((self poly))
102 (length (poly-termlist self)))
[52]103
[2483]104(defmethod multiply-by ((self poly) (other monom))
[2501]105 (mapc #'(lambda (term) (multiply-by term other))
106 (poly-termlist self))
[2483]107 self)
[2469]108
[2501]109(defmethod multiply-by ((self poly) (other scalar))
[2502]110 (mapc #'(lambda (term) (multiply-by term other))
[2501]111 (poly-termlist self))
[2487]112 self)
113
[2607]114
[2761]115(defmacro fast-add/subtract (p q order-fn add/subtract-fn uminus-fn)
[2755]116 "Return an expression which will efficiently adds/subtracts two
117polynomials, P and Q. The addition/subtraction of coefficients is
118performed by calling ADD/SUBTRACT-METHOD-NAME. If UMINUS-METHOD-NAME
119is supplied, it is used to negate the coefficients of Q which do not
[2756]120have a corresponding coefficient in P. The code implements an
121efficient algorithm to add two polynomials represented as sorted lists
122of terms. The code destroys both arguments, reusing the terms to build
123the result."
[2742]124 `(macrolet ((lc (x) `(r-coeff (car ,x))))
125 (do ((p ,p)
126 (q ,q)
127 r)
128 ((or (endp p) (endp q))
129 ;; NOTE: R contains the result in reverse order. Can it
130 ;; be more efficient to produce the terms in correct order?
[2774]131 (unless (endp q)
[2776]132 ;; Upon subtraction, we must change the sign of
133 ;; all coefficients in q
[2774]134 ,@(when uminus-fn
[2775]135 `((mapc #'(lambda (x) (setf x (funcall ,uminus-fn x))) q)))
[2774]136 (setf r (nreconc r q)))
[2742]137 r)
138 (multiple-value-bind
139 (greater-p equal-p)
[2766]140 (funcall ,order-fn (car p) (car q))
[2742]141 (cond
142 (greater-p
143 (rotatef (cdr p) r p)
144 )
145 (equal-p
[2766]146 (let ((s (funcall ,add/subtract-fn (lc p) (lc q))))
[2742]147 (cond
148 ((r-zerop s)
149 (setf p (cdr p))
150 )
151 (t
152 (setf (lc p) s)
153 (rotatef (cdr p) r p))))
154 (setf q (cdr q))
155 )
156 (t
[2743]157 ;;Negate the term of Q if UMINUS provided, signallig
158 ;;that we are doing subtraction
[2908]159 ,(when uminus-fn
160 `(setf (lc q) (funcall ,uminus-fn (lc q))))
[2743]161 (rotatef (cdr q) r q)))))))
[2585]162
[2655]163
[2763]164(defmacro def-add/subtract-method (add/subtract-method-name
[2752]165 uminus-method-name
166 &optional
[2913]167 (doc-string nil doc-string-supplied-p))
[2615]168 "This macro avoids code duplication for two similar operations: ADD-TO and SUBTRACT-FROM."
[2749]169 `(defmethod ,add/subtract-method-name ((self poly) (other poly))
[2615]170 ,@(when doc-string-supplied-p `(,doc-string))
[2769]171 ;; Ensure orders are compatible
[3015]172 (change-term-order other self)
[2772]173 (setf (poly-termlist self) (fast-add/subtract
174 (poly-termlist self) (poly-termlist other)
175 (poly-term-order self)
176 #',add/subtract-method-name
177 ,(when uminus-method-name `(function ,uminus-method-name))))
[2609]178 self))
[2487]179
[2916]180(eval-when (:compile-toplevel :load-toplevel :execute)
[2777]181
182 (def-add/subtract-method add-to nil
183 "Adds to polynomial SELF another polynomial OTHER.
[2610]184This operation destructively modifies both polynomials.
185The result is stored in SELF. This implementation does
[2752]186no consing, entirely reusing the sells of SELF and OTHER.")
[2609]187
[2777]188 (def-add/subtract-method subtract-from unary-minus
[2753]189 "Subtracts from polynomial SELF another polynomial OTHER.
[2610]190This operation destructively modifies both polynomials.
191The result is stored in SELF. This implementation does
[2752]192no consing, entirely reusing the sells of SELF and OTHER.")
[2610]193
[2916]194 )
[2777]195
[2916]196
197
[2691]198(defmethod unary-minus ((self poly))
[2694]199 "Destructively modifies the coefficients of the polynomial SELF,
200by changing their sign."
[2692]201 (mapc #'unary-minus (poly-termlist self))
[2683]202 self)
[52]203
[2795]204(defun add-termlists (p q order-fn)
[2794]205 "Destructively adds two termlists P and Q ordered according to ORDER-FN."
[2917]206 (fast-add/subtract p q order-fn #'add-to nil))
[2794]207
[2800]208(defmacro multiply-term-by-termlist-dropping-zeros (term termlist
[2927]209 &optional (reverse-arg-order-P nil))
[2799]210 "Multiplies term TERM by a list of term, TERMLIST.
[2792]211Takes into accound divisors of zero in the ring, by
[2927]212deleting zero terms. Optionally, if REVERSE-ARG-ORDER-P
[2928]213is T, change the order of arguments; this may be important
[2927]214if we extend the package to non-commutative rings."
[2800]215 `(mapcan #'(lambda (other-term)
[2907]216 (let ((prod (r*
[2923]217 ,@(cond
[2930]218 (reverse-arg-order-p
[2925]219 `(other-term ,term))
220 (t
221 `(,term other-term))))))
[2800]222 (cond
223 ((r-zerop prod) nil)
224 (t (list prod)))))
225 ,termlist))
[2790]226
[2796]227(defun multiply-termlists (p q order-fn)
[2787]228 (cond
[2917]229 ((or (endp p) (endp q))
230 ;;p or q is 0 (represented by NIL)
231 nil)
[2789]232 ;; If p= p0+p1 and q=q0+q1 then p*q=p0*q0+p0*q1+p1*q
[2787]233 ((endp (cdr p))
[2918]234 (multiply-term-by-termlist-dropping-zeros (car p) q))
235 ((endp (cdr q))
[2919]236 (multiply-term-by-termlist-dropping-zeros (car q) p t))
237 (t
[2948]238 (cons (r* (car p) (car q))
[2949]239 (add-termlists
240 (multiply-term-by-termlist-dropping-zeros (car p) (cdr q))
241 (multiply-termlists (cdr p) q order-fn)
242 order-fn)))))
[2793]243
[2803]244(defmethod multiply-by ((self poly) (other poly))
[3014]245 (change-term-order other self)
[2803]246 (setf (poly-termlist self) (multiply-termlists (poly-termlist self)
247 (poly-termlist other)
248 (poly-term-order self)))
249 self)
250
[2939]251(defmethod r* ((poly1 poly) (poly2 poly))
252 "Non-destructively multiply POLY1 by POLY2."
253 (multiply-by (copy-instance POLY1) (copy-instance POLY2)))
[2916]254
[3044]255(defmethod left-tensor-product-by ((self poly) (other term))
256 (setf (poly-termlist self)
257 (mapcan #'(lambda (term)
[3047]258 (let ((prod (left-tensor-product-by term other)))
[3044]259 (cond
260 ((r-zerop prod) nil)
261 (t (list prod)))))
[3048]262 (poly-termlist self)))
[3044]263 self)
264
265(defmethod right-tensor-product-by ((self poly) (other term))
[3045]266 (setf (poly-termlist self)
267 (mapcan #'(lambda (term)
[3046]268 (let ((prod (right-tensor-product-by term other)))
[3045]269 (cond
270 ((r-zerop prod) nil)
271 (t (list prod)))))
[3048]272 (poly-termlist self)))
[3045]273 self)
[3044]274
[3062]275(defmethod left-tensor-product-by ((self poly) (other monom))
276 (setf (poly-termlist self)
277 (mapcan #'(lambda (term)
278 (let ((prod (left-tensor-product-by term other)))
279 (cond
280 ((r-zerop prod) nil)
281 (t (list prod)))))
282 (poly-termlist self)))
283 self)
[3044]284
[3062]285(defmethod right-tensor-product-by ((self poly) (other monom))
286 (setf (poly-termlist self)
287 (mapcan #'(lambda (term)
288 (let ((prod (right-tensor-product-by term other)))
289 (cond
290 ((r-zerop prod) nil)
291 (t (list prod)))))
292 (poly-termlist self)))
293 self)
294
295
[3063]296(defun poly-standard-extension (plist &aux (k (length plist)) (i 0))
[2716]297 "Calculate [U1*P1,U2*P2,...,UK*PK], where PLIST=[P1,P2,...,PK]
[3060]298is a list of polynomials. Destructively modifies PLIST elements."
[3061]299 (mapc #'(lambda (poly)
[3063]300 (left-tensor-product-by poly
301 (prog1 (make-monom-variable k i) (incf i))))
[3061]302 plist))
[52]303
[3067]304(defmethod poly-dimension ((poly poly))
305 (cond ((r-zerop poly) -1)
[3072]306 (t (monom-dimension (leading-term poly)))))
[3067]307
[3081]308(defun saturation-extension (plist
[1473]309 &aux
[3079]310 (k (length plist))
[3068]311 (plist (poly-standard-extension plist))
[3081]312 (dimension (poly-dimension (car plist))))
313 "Calculate [U1*P1-1,U2*P2-1,...,UK*PK-1], where PLIST=[P1,P2,...,PK].
[3080]314The polynomials in F are destructively modified by inserting k variables
315at the beginning."
[3064]316 (flet ((subtract-1 (p)
[3081]317 (append-item p (make-instance 'term :coeff -1 :dimension dimension))))
[3075]318 (print plist)
319 (setf plist (mapc #'subtract-1 plist))
320 (print plist))
[3077]321 plist)
[52]322
323
[3079]324(defun polysaturation-extension (F plist
[1475]325 &aux
326 (k (length plist))
[3079]327 (d (+ k (monom-dimension (poly-lt (car plist)))))
[1494]328 ;; Add k variables to f
[1493]329 (f (poly-list-add-variables f k))
[1495]330 ;; Set PLIST to [U1*P1,U2*P2,...,UK*PK]
[3077]331 (plist (apply #'nconc (poly-standard-extension plist))))
[3079]332 "Calculate [F,U1*P1+U2*P2+...+UK*PK-1], where PLIST=[P1,P2,...,PK]."
[1493]333 ;; Add -1 as the last term
[1908]334 (declare (type ring ring))
[1493]335 (setf (cdr (last (poly-termlist plist)))
[1845]336 (list (make-term :monom (make-monom :dimension d)
337 :coeff (funcall (ring-uminus ring) (funcall (ring-unit ring))))))
[1493]338 (append f (list plist)))
[52]339
[3076]340#|
341
342
[1477]343(defun saturation-extension-1 (ring f p)
[1497]344 "Calculate [F, U*P-1]. It destructively modifies F."
[1908]345 (declare (type ring ring))
[1477]346 (polysaturation-extension ring f (list p)))
[53]347
348;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
349;;
350;; Evaluation of polynomial (prefix) expressions
351;;
352;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
353
354(defun coerce-coeff (ring expr vars)
355 "Coerce an element of the coefficient ring to a constant polynomial."
356 ;; Modular arithmetic handler by rat
[1908]357 (declare (type ring ring))
[1846]358 (make-poly-from-termlist (list (make-term :monom (make-monom :dimension (length vars))
359 :coeff (funcall (ring-parse ring) expr)))
[53]360 0))
361
[1046]362(defun poly-eval (expr vars
363 &optional
[1668]364 (ring +ring-of-integers+)
[1048]365 (order #'lex>)
[1170]366 (list-marker :[)
[1047]367 &aux
368 (ring-and-order (make-ring-and-order :ring ring :order order)))
[1168]369 "Evaluate Lisp form EXPR to a polynomial or a list of polynomials in
[1208]370variables VARS. Return the resulting polynomial or list of
371polynomials. Standard arithmetical operators in form EXPR are
372replaced with their analogues in the ring of polynomials, and the
373resulting expression is evaluated, resulting in a polynomial or a list
[1209]374of polynomials in internal form. A similar operation in another computer
375algebra system could be called 'expand' or so."
[1909]376 (declare (type ring ring))
[1050]377 (labels ((p-eval (arg) (poly-eval arg vars ring order))
[1140]378 (p-eval-scalar (arg) (poly-eval-scalar arg))
[53]379 (p-eval-list (args) (mapcar #'p-eval args))
[989]380 (p-add (x y) (poly-add ring-and-order x y)))
[53]381 (cond
[1128]382 ((null expr) (error "Empty expression"))
[53]383 ((eql expr 0) (make-poly-zero))
384 ((member expr vars :test #'equalp)
385 (let ((pos (position expr vars :test #'equalp)))
[1657]386 (make-poly-variable ring (length vars) pos)))
[53]387 ((atom expr)
388 (coerce-coeff ring expr vars))
389 ((eq (car expr) list-marker)
390 (cons list-marker (p-eval-list (cdr expr))))
391 (t
392 (case (car expr)
393 (+ (reduce #'p-add (p-eval-list (cdr expr))))
394 (- (case (length expr)
395 (1 (make-poly-zero))
396 (2 (poly-uminus ring (p-eval (cadr expr))))
[989]397 (3 (poly-sub ring-and-order (p-eval (cadr expr)) (p-eval (caddr expr))))
398 (otherwise (poly-sub ring-and-order (p-eval (cadr expr))
[53]399 (reduce #'p-add (p-eval-list (cddr expr)))))))
400 (*
401 (if (endp (cddr expr)) ;unary
402 (p-eval (cdr expr))
[989]403 (reduce #'(lambda (p q) (poly-mul ring-and-order p q)) (p-eval-list (cdr expr)))))
[1106]404 (/
405 ;; A polynomial can be divided by a scalar
[1115]406 (cond
407 ((endp (cddr expr))
[1117]408 ;; A special case (/ ?), the inverse
[1119]409 (coerce-coeff ring (apply (ring-div ring) (cdr expr)) vars))
[1128]410 (t
[1115]411 (let ((num (p-eval (cadr expr)))
[1142]412 (denom-inverse (apply (ring-div ring)
413 (cons (funcall (ring-unit ring))
414 (mapcar #'p-eval-scalar (cddr expr))))))
[1118]415 (scalar-times-poly ring denom-inverse num)))))
[53]416 (expt
417 (cond
418 ((member (cadr expr) vars :test #'equalp)
419 ;;Special handling of (expt var pow)
420 (let ((pos (position (cadr expr) vars :test #'equalp)))
[1657]421 (make-poly-variable ring (length vars) pos (caddr expr))))
[53]422 ((not (and (integerp (caddr expr)) (plusp (caddr expr))))
423 ;; Negative power means division in coefficient ring
424 ;; Non-integer power means non-polynomial coefficient
425 (coerce-coeff ring expr vars))
[989]426 (t (poly-expt ring-and-order (p-eval (cadr expr)) (caddr expr)))))
[53]427 (otherwise
428 (coerce-coeff ring expr vars)))))))
429
[1133]430(defun poly-eval-scalar (expr
431 &optional
[1668]432 (ring +ring-of-integers+)
[1133]433 &aux
434 (order #'lex>))
435 "Evaluate a scalar expression EXPR in ring RING."
[1910]436 (declare (type ring ring))
[1133]437 (poly-lc (poly-eval expr nil ring order)))
438
[1189]439(defun spoly (ring-and-order f g
440 &aux
441 (ring (ro-ring ring-and-order)))
[55]442 "It yields the S-polynomial of polynomials F and G."
[1911]443 (declare (type ring-and-order ring-and-order) (type poly f g))
[55]444 (let* ((lcm (monom-lcm (poly-lm f) (poly-lm g)))
[2913]445 (mf (monom-div lcm (poly-lm f)))
446 (mg (monom-div lcm (poly-lm g))))
[55]447 (declare (type monom mf mg))
448 (multiple-value-bind (c cf cg)
449 (funcall (ring-ezgcd ring) (poly-lc f) (poly-lc g))
450 (declare (ignore c))
451 (poly-sub
[1189]452 ring-and-order
[55]453 (scalar-times-poly ring cg (monom-times-poly mf f))
454 (scalar-times-poly ring cf (monom-times-poly mg g))))))
[53]455
456
[55]457(defun poly-primitive-part (ring p)
458 "Divide polynomial P with integer coefficients by gcd of its
459coefficients and return the result."
[1912]460 (declare (type ring ring) (type poly p))
[55]461 (if (poly-zerop p)
462 (values p 1)
[2913]463 (let ((c (poly-content ring p)))
464 (values (make-poly-from-termlist
465 (mapcar
466 #'(lambda (x)
467 (make-term :monom (term-monom x)
468 :coeff (funcall (ring-div ring) (term-coeff x) c)))
469 (poly-termlist p))
470 (poly-sugar p))
471 c))))
[55]472
473(defun poly-content (ring p)
474 "Greatest common divisor of the coefficients of the polynomial P. Use the RING structure
475to compute the greatest common divisor."
[1913]476 (declare (type ring ring) (type poly p))
[55]477 (reduce (ring-gcd ring) (mapcar #'term-coeff (rest (poly-termlist p))) :initial-value (poly-lc p)))
[1066]478
[1091]479(defun read-infix-form (&key (stream t))
[1066]480 "Parser of infix expressions with integer/rational coefficients
481The parser will recognize two kinds of polynomial expressions:
482
483- polynomials in fully expanded forms with coefficients
484 written in front of symbolic expressions; constants can be optionally
485 enclosed in (); for example, the infix form
486 X^2-Y^2+(-4/3)*U^2*W^3-5
487 parses to
488 (+ (- (EXPT X 2) (EXPT Y 2)) (* (- (/ 4 3)) (EXPT U 2) (EXPT W 3)) (- 5))
489
490- lists of polynomials; for example
491 [X-Y, X^2+3*Z]
492 parses to
493 (:[ (- X Y) (+ (EXPT X 2) (* 3 Z)))
494 where the first symbol [ marks a list of polynomials.
495
496-other infix expressions, for example
497 [(X-Y)*(X+Y)/Z,(X+1)^2]
498parses to:
499 (:[ (/ (* (- X Y) (+ X Y)) Z) (EXPT (+ X 1) 2))
500Currently this function is implemented using M. Kantrowitz's INFIX package."
501 (read-from-string
502 (concatenate 'string
[2913]503 "#I("
504 (with-output-to-string (s)
505 (loop
506 (multiple-value-bind (line eof)
507 (read-line stream t)
508 (format s "~A" line)
509 (when eof (return)))))
510 ")")))
511
[1145]512(defun read-poly (vars &key
513 (stream t)
[1668]514 (ring +ring-of-integers+)
[1145]515 (order #'lex>))
[1067]516 "Reads an expression in prefix form from a stream STREAM.
[1144]517The expression read from the strem should represent a polynomial or a
518list of polynomials in variables VARS, over the ring RING. The
519polynomial or list of polynomials is returned, with terms in each
520polynomial ordered according to monomial order ORDER."
[1146]521 (poly-eval (read-infix-form :stream stream) vars ring order))
[1092]522
[1146]523(defun string->poly (str vars
[1164]524 &optional
[1668]525 (ring +ring-of-integers+)
[1146]526 (order #'lex>))
527 "Converts a string STR to a polynomial in variables VARS."
[1097]528 (with-input-from-string (s str)
[1165]529 (read-poly vars :stream s :ring ring :order order)))
[1095]530
[1143]531(defun poly->alist (p)
532 "Convert a polynomial P to an association list. Thus, the format of the
533returned value is ((MONOM[0] . COEFF[0]) (MONOM[1] . COEFF[1]) ...), where
534MONOM[I] is a list of exponents in the monomial and COEFF[I] is the
535corresponding coefficient in the ring."
[1171]536 (cond
537 ((poly-p p)
538 (mapcar #'term->cons (poly-termlist p)))
539 ((and (consp p) (eq (car p) :[))
[1172]540 (cons :[ (mapcar #'poly->alist (cdr p))))))
[1143]541
[1164]542(defun string->alist (str vars
[2913]543 &optional
544 (ring +ring-of-integers+)
545 (order #'lex>))
[1143]546 "Convert a string STR representing a polynomial or polynomial list to
[1158]547an association list (... (MONOM . COEFF) ...)."
[1166]548 (poly->alist (string->poly str vars ring order)))
[1440]549
550(defun poly-equal-no-sugar-p (p q)
551 "Compare polynomials for equality, ignoring sugar."
[1914]552 (declare (type poly p q))
[1440]553 (equalp (poly-termlist p) (poly-termlist q)))
[1559]554
555(defun poly-set-equal-no-sugar-p (p q)
556 "Compare polynomial sets P and Q for equality, ignoring sugar."
557 (null (set-exclusive-or p q :test #'poly-equal-no-sugar-p )))
[1560]558
559(defun poly-list-equal-no-sugar-p (p q)
560 "Compare polynomial lists P and Q for equality, ignoring sugar."
561 (every #'poly-equal-no-sugar-p p q))
[2456]562|#
Note: See TracBrowser for help on using the repository browser.