close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/polynomial.lisp@ 3072

Last change on this file since 3072 was 3072, checked in by Marek Rychlik, 10 years ago

* empty log message *

File size: 19.4 KB
RevLine 
[1201]1;;; -*- Mode: Lisp -*-
[77]2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
[431]22(defpackage "POLYNOMIAL"
[3055]23 (:use :cl :utils :ring :monom :order :term #| :infix |# )
[2596]24 (:export "POLY"
25 "POLY-TERMLIST"
[3016]26 "POLY-TERM-ORDER"
[3071]27 "CHANGE-TERM-ORDER"
28 "SATURATION-EXTENSION")
[2522]29 (:documentation "Implements polynomials"))
[143]30
[431]31(in-package :polynomial)
32
[1927]33(proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0)))
[52]34
[2442]35(defclass poly ()
[2697]36 ((termlist :initarg :termlist :accessor poly-termlist
37 :documentation "List of terms.")
38 (order :initarg :order :accessor poly-term-order
39 :documentation "Monomial/term order."))
[2695]40 (:default-initargs :termlist nil :order #'lex>)
41 (:documentation "A polynomial with a list of terms TERMLIST, ordered
[2696]42according to term order ORDER, which defaults to LEX>."))
[2442]43
[2471]44(defmethod print-object ((self poly) stream)
[2600]45 (format stream "#<POLY TERMLIST=~A ORDER=~A>"
[2595]46 (poly-termlist self)
47 (poly-term-order self)))
[2469]48
[3015]49(defgeneric change-term-order (self other)
[3012]50 (:documentation "Change term order of SELF to the term order of OTHER.")
[3010]51 (:method ((self poly) (other poly))
52 (unless (eq (poly-term-order self) (poly-term-order other))
53 (setf (poly-termlist self) (sort (poly-termlist self) (poly-term-order other))
54 (poly-term-order self) (poly-term-order other)))
[3012]55 self))
[3010]56
[2650]57(defmethod r-equalp ((self poly) (other poly))
[2680]58 "POLY instances are R-EQUALP if they have the same
59order and if all terms are R-EQUALP."
[2651]60 (and (every #'r-equalp (poly-termlist self) (poly-termlist other))
61 (eq (poly-term-order self) (poly-term-order other))))
[2650]62
[2513]63(defmethod insert-item ((self poly) (item term))
64 (push item (poly-termlist self))
[2514]65 self)
[2464]66
[2513]67(defmethod append-item ((self poly) (item term))
68 (setf (cdr (last (poly-termlist self))) (list item))
69 self)
[2466]70
[52]71;; Leading term
[2442]72(defgeneric leading-term (object)
73 (:method ((self poly))
[2525]74 (car (poly-termlist self)))
75 (:documentation "The leading term of a polynomial, or NIL for zero polynomial."))
[52]76
77;; Second term
[2442]78(defgeneric second-leading-term (object)
79 (:method ((self poly))
[2525]80 (cadar (poly-termlist self)))
81 (:documentation "The second leading term of a polynomial, or NIL for a polynomial with at most one term."))
[52]82
83;; Leading coefficient
[2442]84(defgeneric leading-coefficient (object)
85 (:method ((self poly))
[2526]86 (r-coeff (leading-term self)))
[2545]87 (:documentation "The leading coefficient of a polynomial. It signals error for a zero polynomial."))
[52]88
89;; Second coefficient
[2442]90(defgeneric second-leading-coefficient (object)
91 (:method ((self poly))
[2526]92 (r-coeff (second-leading-term self)))
[2906]93 (:documentation "The second leading coefficient of a polynomial. It
94 signals error for a polynomial with at most one term."))
[52]95
96;; Testing for a zero polynomial
[2445]97(defmethod r-zerop ((self poly))
98 (null (poly-termlist self)))
[52]99
100;; The number of terms
[2445]101(defmethod r-length ((self poly))
102 (length (poly-termlist self)))
[52]103
[2483]104(defmethod multiply-by ((self poly) (other monom))
[2501]105 (mapc #'(lambda (term) (multiply-by term other))
106 (poly-termlist self))
[2483]107 self)
[2469]108
[2501]109(defmethod multiply-by ((self poly) (other scalar))
[2502]110 (mapc #'(lambda (term) (multiply-by term other))
[2501]111 (poly-termlist self))
[2487]112 self)
113
[2607]114
[2761]115(defmacro fast-add/subtract (p q order-fn add/subtract-fn uminus-fn)
[2755]116 "Return an expression which will efficiently adds/subtracts two
117polynomials, P and Q. The addition/subtraction of coefficients is
118performed by calling ADD/SUBTRACT-METHOD-NAME. If UMINUS-METHOD-NAME
119is supplied, it is used to negate the coefficients of Q which do not
[2756]120have a corresponding coefficient in P. The code implements an
121efficient algorithm to add two polynomials represented as sorted lists
122of terms. The code destroys both arguments, reusing the terms to build
123the result."
[2742]124 `(macrolet ((lc (x) `(r-coeff (car ,x))))
125 (do ((p ,p)
126 (q ,q)
127 r)
128 ((or (endp p) (endp q))
129 ;; NOTE: R contains the result in reverse order. Can it
130 ;; be more efficient to produce the terms in correct order?
[2774]131 (unless (endp q)
[2776]132 ;; Upon subtraction, we must change the sign of
133 ;; all coefficients in q
[2774]134 ,@(when uminus-fn
[2775]135 `((mapc #'(lambda (x) (setf x (funcall ,uminus-fn x))) q)))
[2774]136 (setf r (nreconc r q)))
[2742]137 r)
138 (multiple-value-bind
139 (greater-p equal-p)
[2766]140 (funcall ,order-fn (car p) (car q))
[2742]141 (cond
142 (greater-p
143 (rotatef (cdr p) r p)
144 )
145 (equal-p
[2766]146 (let ((s (funcall ,add/subtract-fn (lc p) (lc q))))
[2742]147 (cond
148 ((r-zerop s)
149 (setf p (cdr p))
150 )
151 (t
152 (setf (lc p) s)
153 (rotatef (cdr p) r p))))
154 (setf q (cdr q))
155 )
156 (t
[2743]157 ;;Negate the term of Q if UMINUS provided, signallig
158 ;;that we are doing subtraction
[2908]159 ,(when uminus-fn
160 `(setf (lc q) (funcall ,uminus-fn (lc q))))
[2743]161 (rotatef (cdr q) r q)))))))
[2585]162
[2655]163
[2763]164(defmacro def-add/subtract-method (add/subtract-method-name
[2752]165 uminus-method-name
166 &optional
[2913]167 (doc-string nil doc-string-supplied-p))
[2615]168 "This macro avoids code duplication for two similar operations: ADD-TO and SUBTRACT-FROM."
[2749]169 `(defmethod ,add/subtract-method-name ((self poly) (other poly))
[2615]170 ,@(when doc-string-supplied-p `(,doc-string))
[2769]171 ;; Ensure orders are compatible
[3015]172 (change-term-order other self)
[2772]173 (setf (poly-termlist self) (fast-add/subtract
174 (poly-termlist self) (poly-termlist other)
175 (poly-term-order self)
176 #',add/subtract-method-name
177 ,(when uminus-method-name `(function ,uminus-method-name))))
[2609]178 self))
[2487]179
[2916]180(eval-when (:compile-toplevel :load-toplevel :execute)
[2777]181
182 (def-add/subtract-method add-to nil
183 "Adds to polynomial SELF another polynomial OTHER.
[2610]184This operation destructively modifies both polynomials.
185The result is stored in SELF. This implementation does
[2752]186no consing, entirely reusing the sells of SELF and OTHER.")
[2609]187
[2777]188 (def-add/subtract-method subtract-from unary-minus
[2753]189 "Subtracts from polynomial SELF another polynomial OTHER.
[2610]190This operation destructively modifies both polynomials.
191The result is stored in SELF. This implementation does
[2752]192no consing, entirely reusing the sells of SELF and OTHER.")
[2610]193
[2916]194 )
[2777]195
[2916]196
197
[2691]198(defmethod unary-minus ((self poly))
[2694]199 "Destructively modifies the coefficients of the polynomial SELF,
200by changing their sign."
[2692]201 (mapc #'unary-minus (poly-termlist self))
[2683]202 self)
[52]203
[2795]204(defun add-termlists (p q order-fn)
[2794]205 "Destructively adds two termlists P and Q ordered according to ORDER-FN."
[2917]206 (fast-add/subtract p q order-fn #'add-to nil))
[2794]207
[2800]208(defmacro multiply-term-by-termlist-dropping-zeros (term termlist
[2927]209 &optional (reverse-arg-order-P nil))
[2799]210 "Multiplies term TERM by a list of term, TERMLIST.
[2792]211Takes into accound divisors of zero in the ring, by
[2927]212deleting zero terms. Optionally, if REVERSE-ARG-ORDER-P
[2928]213is T, change the order of arguments; this may be important
[2927]214if we extend the package to non-commutative rings."
[2800]215 `(mapcan #'(lambda (other-term)
[2907]216 (let ((prod (r*
[2923]217 ,@(cond
[2930]218 (reverse-arg-order-p
[2925]219 `(other-term ,term))
220 (t
221 `(,term other-term))))))
[2800]222 (cond
223 ((r-zerop prod) nil)
224 (t (list prod)))))
225 ,termlist))
[2790]226
[2796]227(defun multiply-termlists (p q order-fn)
[2787]228 (cond
[2917]229 ((or (endp p) (endp q))
230 ;;p or q is 0 (represented by NIL)
231 nil)
[2789]232 ;; If p= p0+p1 and q=q0+q1 then p*q=p0*q0+p0*q1+p1*q
[2787]233 ((endp (cdr p))
[2918]234 (multiply-term-by-termlist-dropping-zeros (car p) q))
235 ((endp (cdr q))
[2919]236 (multiply-term-by-termlist-dropping-zeros (car q) p t))
237 (t
[2948]238 (cons (r* (car p) (car q))
[2949]239 (add-termlists
240 (multiply-term-by-termlist-dropping-zeros (car p) (cdr q))
241 (multiply-termlists (cdr p) q order-fn)
242 order-fn)))))
[2793]243
[2803]244(defmethod multiply-by ((self poly) (other poly))
[3014]245 (change-term-order other self)
[2803]246 (setf (poly-termlist self) (multiply-termlists (poly-termlist self)
247 (poly-termlist other)
248 (poly-term-order self)))
249 self)
250
[2939]251(defmethod r* ((poly1 poly) (poly2 poly))
252 "Non-destructively multiply POLY1 by POLY2."
253 (multiply-by (copy-instance POLY1) (copy-instance POLY2)))
[2916]254
[3044]255(defmethod left-tensor-product-by ((self poly) (other term))
256 (setf (poly-termlist self)
257 (mapcan #'(lambda (term)
[3047]258 (let ((prod (left-tensor-product-by term other)))
[3044]259 (cond
260 ((r-zerop prod) nil)
261 (t (list prod)))))
[3048]262 (poly-termlist self)))
[3044]263 self)
264
265(defmethod right-tensor-product-by ((self poly) (other term))
[3045]266 (setf (poly-termlist self)
267 (mapcan #'(lambda (term)
[3046]268 (let ((prod (right-tensor-product-by term other)))
[3045]269 (cond
270 ((r-zerop prod) nil)
271 (t (list prod)))))
[3048]272 (poly-termlist self)))
[3045]273 self)
[3044]274
[3062]275(defmethod left-tensor-product-by ((self poly) (other monom))
276 (setf (poly-termlist self)
277 (mapcan #'(lambda (term)
278 (let ((prod (left-tensor-product-by term other)))
279 (cond
280 ((r-zerop prod) nil)
281 (t (list prod)))))
282 (poly-termlist self)))
283 self)
[3044]284
[3062]285(defmethod right-tensor-product-by ((self poly) (other monom))
286 (setf (poly-termlist self)
287 (mapcan #'(lambda (term)
288 (let ((prod (right-tensor-product-by term other)))
289 (cond
290 ((r-zerop prod) nil)
291 (t (list prod)))))
292 (poly-termlist self)))
293 self)
294
295
[3063]296(defun poly-standard-extension (plist &aux (k (length plist)) (i 0))
[2716]297 "Calculate [U1*P1,U2*P2,...,UK*PK], where PLIST=[P1,P2,...,PK]
[3060]298is a list of polynomials. Destructively modifies PLIST elements."
[3061]299 (mapc #'(lambda (poly)
[3063]300 (left-tensor-product-by poly
301 (prog1 (make-monom-variable k i) (incf i))))
[3061]302 plist))
[52]303
[3067]304(defmethod poly-dimension ((poly poly))
305 (cond ((r-zerop poly) -1)
[3072]306 (t (monom-dimension (leading-term poly)))))
[3067]307
[3069]308(defun saturation-extension (F plist
[1473]309 &aux
[3068]310 (plist (poly-standard-extension plist))
[3064]311 (dim (poly-dimension (car plist))))
[52]312 "Calculate [F, U1*P1-1,U2*P2-1,...,UK*PK-1], where PLIST=[P1,P2,...,PK]."
[3064]313 (flet ((subtract-1 (p)
[3070]314 (insert-item (make-instance 'term :coeff -1 :dimension dim))
315 p))
[3066]316 (setf plist (mapc #'subtract-1 plist)))
[3064]317 (nconc F plist))
[52]318
319
[3065]320#|
[1475]321(defun polysaturation-extension (ring f plist
322 &aux
323 (k (length plist))
[1476]324 (d (+ k (monom-dimension (poly-lm (car plist)))))
[1494]325 ;; Add k variables to f
[1493]326 (f (poly-list-add-variables f k))
[1495]327 ;; Set PLIST to [U1*P1,U2*P2,...,UK*PK]
[1493]328 (plist (apply #'poly-append (poly-standard-extension plist))))
[1497]329 "Calculate [F, U1*P1+U2*P2+...+UK*PK-1], where PLIST=[P1,P2,...,PK]. It destructively modifies F."
[1493]330 ;; Add -1 as the last term
[1908]331 (declare (type ring ring))
[1493]332 (setf (cdr (last (poly-termlist plist)))
[1845]333 (list (make-term :monom (make-monom :dimension d)
334 :coeff (funcall (ring-uminus ring) (funcall (ring-unit ring))))))
[1493]335 (append f (list plist)))
[52]336
[1477]337(defun saturation-extension-1 (ring f p)
[1497]338 "Calculate [F, U*P-1]. It destructively modifies F."
[1908]339 (declare (type ring ring))
[1477]340 (polysaturation-extension ring f (list p)))
[53]341
342;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
343;;
344;; Evaluation of polynomial (prefix) expressions
345;;
346;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
347
348(defun coerce-coeff (ring expr vars)
349 "Coerce an element of the coefficient ring to a constant polynomial."
350 ;; Modular arithmetic handler by rat
[1908]351 (declare (type ring ring))
[1846]352 (make-poly-from-termlist (list (make-term :monom (make-monom :dimension (length vars))
353 :coeff (funcall (ring-parse ring) expr)))
[53]354 0))
355
[1046]356(defun poly-eval (expr vars
357 &optional
[1668]358 (ring +ring-of-integers+)
[1048]359 (order #'lex>)
[1170]360 (list-marker :[)
[1047]361 &aux
362 (ring-and-order (make-ring-and-order :ring ring :order order)))
[1168]363 "Evaluate Lisp form EXPR to a polynomial or a list of polynomials in
[1208]364variables VARS. Return the resulting polynomial or list of
365polynomials. Standard arithmetical operators in form EXPR are
366replaced with their analogues in the ring of polynomials, and the
367resulting expression is evaluated, resulting in a polynomial or a list
[1209]368of polynomials in internal form. A similar operation in another computer
369algebra system could be called 'expand' or so."
[1909]370 (declare (type ring ring))
[1050]371 (labels ((p-eval (arg) (poly-eval arg vars ring order))
[1140]372 (p-eval-scalar (arg) (poly-eval-scalar arg))
[53]373 (p-eval-list (args) (mapcar #'p-eval args))
[989]374 (p-add (x y) (poly-add ring-and-order x y)))
[53]375 (cond
[1128]376 ((null expr) (error "Empty expression"))
[53]377 ((eql expr 0) (make-poly-zero))
378 ((member expr vars :test #'equalp)
379 (let ((pos (position expr vars :test #'equalp)))
[1657]380 (make-poly-variable ring (length vars) pos)))
[53]381 ((atom expr)
382 (coerce-coeff ring expr vars))
383 ((eq (car expr) list-marker)
384 (cons list-marker (p-eval-list (cdr expr))))
385 (t
386 (case (car expr)
387 (+ (reduce #'p-add (p-eval-list (cdr expr))))
388 (- (case (length expr)
389 (1 (make-poly-zero))
390 (2 (poly-uminus ring (p-eval (cadr expr))))
[989]391 (3 (poly-sub ring-and-order (p-eval (cadr expr)) (p-eval (caddr expr))))
392 (otherwise (poly-sub ring-and-order (p-eval (cadr expr))
[53]393 (reduce #'p-add (p-eval-list (cddr expr)))))))
394 (*
395 (if (endp (cddr expr)) ;unary
396 (p-eval (cdr expr))
[989]397 (reduce #'(lambda (p q) (poly-mul ring-and-order p q)) (p-eval-list (cdr expr)))))
[1106]398 (/
399 ;; A polynomial can be divided by a scalar
[1115]400 (cond
401 ((endp (cddr expr))
[1117]402 ;; A special case (/ ?), the inverse
[1119]403 (coerce-coeff ring (apply (ring-div ring) (cdr expr)) vars))
[1128]404 (t
[1115]405 (let ((num (p-eval (cadr expr)))
[1142]406 (denom-inverse (apply (ring-div ring)
407 (cons (funcall (ring-unit ring))
408 (mapcar #'p-eval-scalar (cddr expr))))))
[1118]409 (scalar-times-poly ring denom-inverse num)))))
[53]410 (expt
411 (cond
412 ((member (cadr expr) vars :test #'equalp)
413 ;;Special handling of (expt var pow)
414 (let ((pos (position (cadr expr) vars :test #'equalp)))
[1657]415 (make-poly-variable ring (length vars) pos (caddr expr))))
[53]416 ((not (and (integerp (caddr expr)) (plusp (caddr expr))))
417 ;; Negative power means division in coefficient ring
418 ;; Non-integer power means non-polynomial coefficient
419 (coerce-coeff ring expr vars))
[989]420 (t (poly-expt ring-and-order (p-eval (cadr expr)) (caddr expr)))))
[53]421 (otherwise
422 (coerce-coeff ring expr vars)))))))
423
[1133]424(defun poly-eval-scalar (expr
425 &optional
[1668]426 (ring +ring-of-integers+)
[1133]427 &aux
428 (order #'lex>))
429 "Evaluate a scalar expression EXPR in ring RING."
[1910]430 (declare (type ring ring))
[1133]431 (poly-lc (poly-eval expr nil ring order)))
432
[1189]433(defun spoly (ring-and-order f g
434 &aux
435 (ring (ro-ring ring-and-order)))
[55]436 "It yields the S-polynomial of polynomials F and G."
[1911]437 (declare (type ring-and-order ring-and-order) (type poly f g))
[55]438 (let* ((lcm (monom-lcm (poly-lm f) (poly-lm g)))
[2913]439 (mf (monom-div lcm (poly-lm f)))
440 (mg (monom-div lcm (poly-lm g))))
[55]441 (declare (type monom mf mg))
442 (multiple-value-bind (c cf cg)
443 (funcall (ring-ezgcd ring) (poly-lc f) (poly-lc g))
444 (declare (ignore c))
445 (poly-sub
[1189]446 ring-and-order
[55]447 (scalar-times-poly ring cg (monom-times-poly mf f))
448 (scalar-times-poly ring cf (monom-times-poly mg g))))))
[53]449
450
[55]451(defun poly-primitive-part (ring p)
452 "Divide polynomial P with integer coefficients by gcd of its
453coefficients and return the result."
[1912]454 (declare (type ring ring) (type poly p))
[55]455 (if (poly-zerop p)
456 (values p 1)
[2913]457 (let ((c (poly-content ring p)))
458 (values (make-poly-from-termlist
459 (mapcar
460 #'(lambda (x)
461 (make-term :monom (term-monom x)
462 :coeff (funcall (ring-div ring) (term-coeff x) c)))
463 (poly-termlist p))
464 (poly-sugar p))
465 c))))
[55]466
467(defun poly-content (ring p)
468 "Greatest common divisor of the coefficients of the polynomial P. Use the RING structure
469to compute the greatest common divisor."
[1913]470 (declare (type ring ring) (type poly p))
[55]471 (reduce (ring-gcd ring) (mapcar #'term-coeff (rest (poly-termlist p))) :initial-value (poly-lc p)))
[1066]472
[1091]473(defun read-infix-form (&key (stream t))
[1066]474 "Parser of infix expressions with integer/rational coefficients
475The parser will recognize two kinds of polynomial expressions:
476
477- polynomials in fully expanded forms with coefficients
478 written in front of symbolic expressions; constants can be optionally
479 enclosed in (); for example, the infix form
480 X^2-Y^2+(-4/3)*U^2*W^3-5
481 parses to
482 (+ (- (EXPT X 2) (EXPT Y 2)) (* (- (/ 4 3)) (EXPT U 2) (EXPT W 3)) (- 5))
483
484- lists of polynomials; for example
485 [X-Y, X^2+3*Z]
486 parses to
487 (:[ (- X Y) (+ (EXPT X 2) (* 3 Z)))
488 where the first symbol [ marks a list of polynomials.
489
490-other infix expressions, for example
491 [(X-Y)*(X+Y)/Z,(X+1)^2]
492parses to:
493 (:[ (/ (* (- X Y) (+ X Y)) Z) (EXPT (+ X 1) 2))
494Currently this function is implemented using M. Kantrowitz's INFIX package."
495 (read-from-string
496 (concatenate 'string
[2913]497 "#I("
498 (with-output-to-string (s)
499 (loop
500 (multiple-value-bind (line eof)
501 (read-line stream t)
502 (format s "~A" line)
503 (when eof (return)))))
504 ")")))
505
[1145]506(defun read-poly (vars &key
507 (stream t)
[1668]508 (ring +ring-of-integers+)
[1145]509 (order #'lex>))
[1067]510 "Reads an expression in prefix form from a stream STREAM.
[1144]511The expression read from the strem should represent a polynomial or a
512list of polynomials in variables VARS, over the ring RING. The
513polynomial or list of polynomials is returned, with terms in each
514polynomial ordered according to monomial order ORDER."
[1146]515 (poly-eval (read-infix-form :stream stream) vars ring order))
[1092]516
[1146]517(defun string->poly (str vars
[1164]518 &optional
[1668]519 (ring +ring-of-integers+)
[1146]520 (order #'lex>))
521 "Converts a string STR to a polynomial in variables VARS."
[1097]522 (with-input-from-string (s str)
[1165]523 (read-poly vars :stream s :ring ring :order order)))
[1095]524
[1143]525(defun poly->alist (p)
526 "Convert a polynomial P to an association list. Thus, the format of the
527returned value is ((MONOM[0] . COEFF[0]) (MONOM[1] . COEFF[1]) ...), where
528MONOM[I] is a list of exponents in the monomial and COEFF[I] is the
529corresponding coefficient in the ring."
[1171]530 (cond
531 ((poly-p p)
532 (mapcar #'term->cons (poly-termlist p)))
533 ((and (consp p) (eq (car p) :[))
[1172]534 (cons :[ (mapcar #'poly->alist (cdr p))))))
[1143]535
[1164]536(defun string->alist (str vars
[2913]537 &optional
538 (ring +ring-of-integers+)
539 (order #'lex>))
[1143]540 "Convert a string STR representing a polynomial or polynomial list to
[1158]541an association list (... (MONOM . COEFF) ...)."
[1166]542 (poly->alist (string->poly str vars ring order)))
[1440]543
544(defun poly-equal-no-sugar-p (p q)
545 "Compare polynomials for equality, ignoring sugar."
[1914]546 (declare (type poly p q))
[1440]547 (equalp (poly-termlist p) (poly-termlist q)))
[1559]548
549(defun poly-set-equal-no-sugar-p (p q)
550 "Compare polynomial sets P and Q for equality, ignoring sugar."
551 (null (set-exclusive-or p q :test #'poly-equal-no-sugar-p )))
[1560]552
553(defun poly-list-equal-no-sugar-p (p q)
554 "Compare polynomial lists P and Q for equality, ignoring sugar."
555 (every #'poly-equal-no-sugar-p p q))
[2456]556|#
Note: See TracBrowser for help on using the repository browser.