close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/polynomial.lisp@ 2750

Last change on this file since 2750 was 2750, checked in by Marek Rychlik, 9 years ago

* empty log message *

File size: 16.3 KB
RevLine 
[1201]1;;; -*- Mode: Lisp -*-
[77]2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
[431]22(defpackage "POLYNOMIAL"
[2462]23 (:use :cl :ring :monom :order :term #| :infix |# )
[2596]24 (:export "POLY"
25 "POLY-TERMLIST"
26 "POLY-TERM-ORDER")
[2522]27 (:documentation "Implements polynomials"))
[143]28
[431]29(in-package :polynomial)
30
[1927]31(proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0)))
[52]32
[2442]33(defclass poly ()
[2697]34 ((termlist :initarg :termlist :accessor poly-termlist
35 :documentation "List of terms.")
36 (order :initarg :order :accessor poly-term-order
37 :documentation "Monomial/term order."))
[2695]38 (:default-initargs :termlist nil :order #'lex>)
39 (:documentation "A polynomial with a list of terms TERMLIST, ordered
[2696]40according to term order ORDER, which defaults to LEX>."))
[2442]41
[2471]42(defmethod print-object ((self poly) stream)
[2600]43 (format stream "#<POLY TERMLIST=~A ORDER=~A>"
[2595]44 (poly-termlist self)
45 (poly-term-order self)))
[2469]46
[2650]47(defmethod r-equalp ((self poly) (other poly))
[2680]48 "POLY instances are R-EQUALP if they have the same
49order and if all terms are R-EQUALP."
[2651]50 (and (every #'r-equalp (poly-termlist self) (poly-termlist other))
51 (eq (poly-term-order self) (poly-term-order other))))
[2650]52
[2513]53(defmethod insert-item ((self poly) (item term))
54 (push item (poly-termlist self))
[2514]55 self)
[2464]56
[2513]57(defmethod append-item ((self poly) (item term))
58 (setf (cdr (last (poly-termlist self))) (list item))
59 self)
[2466]60
[52]61;; Leading term
[2442]62(defgeneric leading-term (object)
63 (:method ((self poly))
[2525]64 (car (poly-termlist self)))
65 (:documentation "The leading term of a polynomial, or NIL for zero polynomial."))
[52]66
67;; Second term
[2442]68(defgeneric second-leading-term (object)
69 (:method ((self poly))
[2525]70 (cadar (poly-termlist self)))
71 (:documentation "The second leading term of a polynomial, or NIL for a polynomial with at most one term."))
[52]72
73;; Leading coefficient
[2442]74(defgeneric leading-coefficient (object)
75 (:method ((self poly))
[2526]76 (r-coeff (leading-term self)))
[2545]77 (:documentation "The leading coefficient of a polynomial. It signals error for a zero polynomial."))
[52]78
79;; Second coefficient
[2442]80(defgeneric second-leading-coefficient (object)
81 (:method ((self poly))
[2526]82 (r-coeff (second-leading-term self)))
[2544]83 (:documentation "The second leading coefficient of a polynomial. It signals error for a polynomial with at most one term."))
[52]84
85;; Testing for a zero polynomial
[2445]86(defmethod r-zerop ((self poly))
87 (null (poly-termlist self)))
[52]88
89;; The number of terms
[2445]90(defmethod r-length ((self poly))
91 (length (poly-termlist self)))
[52]92
[2483]93(defmethod multiply-by ((self poly) (other monom))
[2501]94 (mapc #'(lambda (term) (multiply-by term other))
95 (poly-termlist self))
[2483]96 self)
[2469]97
[2501]98(defmethod multiply-by ((self poly) (other scalar))
[2502]99 (mapc #'(lambda (term) (multiply-by term other))
[2501]100 (poly-termlist self))
[2487]101 self)
102
[2607]103
[2742]104(defmacro fast-add/subtract (p q order-fn add/subtract-fun
[2739]105 &optional
106 (uminus-fun nil uminus-fun-supplied-p))
107 "Return an expression which will efficiently of two polynomials. Implements an efficient
[2682]108algorithm to add two polynomials represented as sorted lists of
109terms. This function destroys both arguments, reusing the terms to
110build the result."
[2742]111 `(macrolet ((lc (x) `(r-coeff (car ,x))))
112 (do ((p ,p)
113 (q ,q)
114 r)
115 ((or (endp p) (endp q))
116 ;; NOTE: R contains the result in reverse order. Can it
117 ;; be more efficient to produce the terms in correct order?
118 (unless (endp q) (setf r (nreconc r q)))
119 r)
120 (multiple-value-bind
121 (greater-p equal-p)
122 (funcall ,order-fn (car p) (car q))
123 (cond
124 (greater-p
125 (rotatef (cdr p) r p)
126 )
127 (equal-p
128 (let ((s (funcall ,add/subtract-fun (lc p) (lc q))))
129 (cond
130 ((r-zerop s)
131 (setf p (cdr p))
132 )
133 (t
134 (setf (lc p) s)
135 (rotatef (cdr p) r p))))
136 (setf q (cdr q))
137 )
138 (t
[2743]139 ;;Negate the term of Q if UMINUS provided, signallig
140 ;;that we are doing subtraction
[2742]141 ,@(when uminus-fun-supplied-p
142 `((setf (lc q) (funcall ,uminus-fun (lc q)))))
[2743]143 (rotatef (cdr q) r q)))))))
[2585]144
[2655]145
[2747]146(defmacro def-add/subtract-method (add/subtract-method-name
[2745]147 (&key
[2746]148 (doc-string nil doc-string-supplied-p)
[2747]149 (uminus-method-name nil uminus-method-name-supplied-p)))
[2615]150 "This macro avoids code duplication for two similar operations: ADD-TO and SUBTRACT-FROM."
[2749]151 `(defmethod ,add/subtract-method-name ((self poly) (other poly))
[2615]152 ,@(when doc-string-supplied-p `(,doc-string))
[2609]153 (with-slots ((termlist1 termlist) (order1 order))
154 self
155 (with-slots ((termlist2 termlist) (order2 order))
156 other
157 ;; Ensure orders are compatible
158 (unless (eq order1 order2)
159 (setf termlist2 (sort termlist2 order1)
160 order2 order1))
[2747]161 (setf termlist1 (fast-add/subtract
162 termlist1 termlist2 order1
163 #',add/subtract-method-name
[2749]164 ,@(when uminus-method-name-supplied-p
165 `(#',uminus-method-name))))))
[2609]166 self))
[2487]167
[2744]168(def-add/subtract-method add-to
[2750]169 (:uminus-method-name 'unary-minus)
[2745]170 (:doc-string
171 "Adds to polynomial SELF another polynomial OTHER.
[2610]172This operation destructively modifies both polynomials.
173The result is stored in SELF. This implementation does
[2745]174no consing, entirely reusing the sells of SELF and OTHER."))
[2609]175
[2744]176(def-add/subtract-method subtract-from
[2745]177 (:doc-string "Subtracts from polynomial SELF another polynomial OTHER.
[2610]178This operation destructively modifies both polynomials.
179The result is stored in SELF. This implementation does
[2745]180no consing, entirely reusing the sells of SELF and OTHER."))
[2610]181
[2691]182(defmethod unary-minus ((self poly))
[2694]183 "Destructively modifies the coefficients of the polynomial SELF,
184by changing their sign."
[2692]185 (mapc #'unary-minus (poly-termlist self))
[2683]186 self)
[52]187
[2727]188#|
189
[52]190(defun poly-standard-extension (plist &aux (k (length plist)))
[2716]191 "Calculate [U1*P1,U2*P2,...,UK*PK], where PLIST=[P1,P2,...,PK]
192is a list of polynomials."
[52]193 (declare (list plist) (fixnum k))
194 (labels ((incf-power (g i)
195 (dolist (x (poly-termlist g))
196 (incf (monom-elt (term-monom x) i)))
197 (incf (poly-sugar g))))
198 (setf plist (poly-list-add-variables plist k))
199 (dotimes (i k plist)
200 (incf-power (nth i plist) i))))
201
[2716]202
[2727]203
[1473]204(defun saturation-extension (ring f plist
205 &aux
206 (k (length plist))
[1474]207 (d (monom-dimension (poly-lm (car plist))))
208 f-x plist-x)
[52]209 "Calculate [F, U1*P1-1,U2*P2-1,...,UK*PK-1], where PLIST=[P1,P2,...,PK]."
[1907]210 (declare (type ring ring))
[1474]211 (setf f-x (poly-list-add-variables f k)
212 plist-x (mapcar #'(lambda (x)
[1843]213 (setf (poly-termlist x)
214 (nconc (poly-termlist x)
215 (list (make-term :monom (make-monom :dimension d)
[1844]216 :coeff (funcall (ring-uminus ring)
217 (funcall (ring-unit ring)))))))
[1474]218 x)
219 (poly-standard-extension plist)))
220 (append f-x plist-x))
[52]221
222
[1475]223(defun polysaturation-extension (ring f plist
224 &aux
225 (k (length plist))
[1476]226 (d (+ k (monom-dimension (poly-lm (car plist)))))
[1494]227 ;; Add k variables to f
[1493]228 (f (poly-list-add-variables f k))
[1495]229 ;; Set PLIST to [U1*P1,U2*P2,...,UK*PK]
[1493]230 (plist (apply #'poly-append (poly-standard-extension plist))))
[1497]231 "Calculate [F, U1*P1+U2*P2+...+UK*PK-1], where PLIST=[P1,P2,...,PK]. It destructively modifies F."
[1493]232 ;; Add -1 as the last term
[1908]233 (declare (type ring ring))
[1493]234 (setf (cdr (last (poly-termlist plist)))
[1845]235 (list (make-term :monom (make-monom :dimension d)
236 :coeff (funcall (ring-uminus ring) (funcall (ring-unit ring))))))
[1493]237 (append f (list plist)))
[52]238
[1477]239(defun saturation-extension-1 (ring f p)
[1497]240 "Calculate [F, U*P-1]. It destructively modifies F."
[1908]241 (declare (type ring ring))
[1477]242 (polysaturation-extension ring f (list p)))
[53]243
244;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
245;;
246;; Evaluation of polynomial (prefix) expressions
247;;
248;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
249
250(defun coerce-coeff (ring expr vars)
251 "Coerce an element of the coefficient ring to a constant polynomial."
252 ;; Modular arithmetic handler by rat
[1908]253 (declare (type ring ring))
[1846]254 (make-poly-from-termlist (list (make-term :monom (make-monom :dimension (length vars))
255 :coeff (funcall (ring-parse ring) expr)))
[53]256 0))
257
[1046]258(defun poly-eval (expr vars
259 &optional
[1668]260 (ring +ring-of-integers+)
[1048]261 (order #'lex>)
[1170]262 (list-marker :[)
[1047]263 &aux
264 (ring-and-order (make-ring-and-order :ring ring :order order)))
[1168]265 "Evaluate Lisp form EXPR to a polynomial or a list of polynomials in
[1208]266variables VARS. Return the resulting polynomial or list of
267polynomials. Standard arithmetical operators in form EXPR are
268replaced with their analogues in the ring of polynomials, and the
269resulting expression is evaluated, resulting in a polynomial or a list
[1209]270of polynomials in internal form. A similar operation in another computer
271algebra system could be called 'expand' or so."
[1909]272 (declare (type ring ring))
[1050]273 (labels ((p-eval (arg) (poly-eval arg vars ring order))
[1140]274 (p-eval-scalar (arg) (poly-eval-scalar arg))
[53]275 (p-eval-list (args) (mapcar #'p-eval args))
[989]276 (p-add (x y) (poly-add ring-and-order x y)))
[53]277 (cond
[1128]278 ((null expr) (error "Empty expression"))
[53]279 ((eql expr 0) (make-poly-zero))
280 ((member expr vars :test #'equalp)
281 (let ((pos (position expr vars :test #'equalp)))
[1657]282 (make-poly-variable ring (length vars) pos)))
[53]283 ((atom expr)
284 (coerce-coeff ring expr vars))
285 ((eq (car expr) list-marker)
286 (cons list-marker (p-eval-list (cdr expr))))
287 (t
288 (case (car expr)
289 (+ (reduce #'p-add (p-eval-list (cdr expr))))
290 (- (case (length expr)
291 (1 (make-poly-zero))
292 (2 (poly-uminus ring (p-eval (cadr expr))))
[989]293 (3 (poly-sub ring-and-order (p-eval (cadr expr)) (p-eval (caddr expr))))
294 (otherwise (poly-sub ring-and-order (p-eval (cadr expr))
[53]295 (reduce #'p-add (p-eval-list (cddr expr)))))))
296 (*
297 (if (endp (cddr expr)) ;unary
298 (p-eval (cdr expr))
[989]299 (reduce #'(lambda (p q) (poly-mul ring-and-order p q)) (p-eval-list (cdr expr)))))
[1106]300 (/
301 ;; A polynomial can be divided by a scalar
[1115]302 (cond
303 ((endp (cddr expr))
[1117]304 ;; A special case (/ ?), the inverse
[1119]305 (coerce-coeff ring (apply (ring-div ring) (cdr expr)) vars))
[1128]306 (t
[1115]307 (let ((num (p-eval (cadr expr)))
[1142]308 (denom-inverse (apply (ring-div ring)
309 (cons (funcall (ring-unit ring))
310 (mapcar #'p-eval-scalar (cddr expr))))))
[1118]311 (scalar-times-poly ring denom-inverse num)))))
[53]312 (expt
313 (cond
314 ((member (cadr expr) vars :test #'equalp)
315 ;;Special handling of (expt var pow)
316 (let ((pos (position (cadr expr) vars :test #'equalp)))
[1657]317 (make-poly-variable ring (length vars) pos (caddr expr))))
[53]318 ((not (and (integerp (caddr expr)) (plusp (caddr expr))))
319 ;; Negative power means division in coefficient ring
320 ;; Non-integer power means non-polynomial coefficient
321 (coerce-coeff ring expr vars))
[989]322 (t (poly-expt ring-and-order (p-eval (cadr expr)) (caddr expr)))))
[53]323 (otherwise
324 (coerce-coeff ring expr vars)))))))
325
[1133]326(defun poly-eval-scalar (expr
327 &optional
[1668]328 (ring +ring-of-integers+)
[1133]329 &aux
330 (order #'lex>))
331 "Evaluate a scalar expression EXPR in ring RING."
[1910]332 (declare (type ring ring))
[1133]333 (poly-lc (poly-eval expr nil ring order)))
334
[1189]335(defun spoly (ring-and-order f g
336 &aux
337 (ring (ro-ring ring-and-order)))
[55]338 "It yields the S-polynomial of polynomials F and G."
[1911]339 (declare (type ring-and-order ring-and-order) (type poly f g))
[55]340 (let* ((lcm (monom-lcm (poly-lm f) (poly-lm g)))
341 (mf (monom-div lcm (poly-lm f)))
342 (mg (monom-div lcm (poly-lm g))))
343 (declare (type monom mf mg))
344 (multiple-value-bind (c cf cg)
345 (funcall (ring-ezgcd ring) (poly-lc f) (poly-lc g))
346 (declare (ignore c))
347 (poly-sub
[1189]348 ring-and-order
[55]349 (scalar-times-poly ring cg (monom-times-poly mf f))
350 (scalar-times-poly ring cf (monom-times-poly mg g))))))
[53]351
352
[55]353(defun poly-primitive-part (ring p)
354 "Divide polynomial P with integer coefficients by gcd of its
355coefficients and return the result."
[1912]356 (declare (type ring ring) (type poly p))
[55]357 (if (poly-zerop p)
358 (values p 1)
359 (let ((c (poly-content ring p)))
[1203]360 (values (make-poly-from-termlist
361 (mapcar
362 #'(lambda (x)
[1847]363 (make-term :monom (term-monom x)
364 :coeff (funcall (ring-div ring) (term-coeff x) c)))
[1203]365 (poly-termlist p))
366 (poly-sugar p))
367 c))))
[55]368
369(defun poly-content (ring p)
370 "Greatest common divisor of the coefficients of the polynomial P. Use the RING structure
371to compute the greatest common divisor."
[1913]372 (declare (type ring ring) (type poly p))
[55]373 (reduce (ring-gcd ring) (mapcar #'term-coeff (rest (poly-termlist p))) :initial-value (poly-lc p)))
[1066]374
[1091]375(defun read-infix-form (&key (stream t))
[1066]376 "Parser of infix expressions with integer/rational coefficients
377The parser will recognize two kinds of polynomial expressions:
378
379- polynomials in fully expanded forms with coefficients
380 written in front of symbolic expressions; constants can be optionally
381 enclosed in (); for example, the infix form
382 X^2-Y^2+(-4/3)*U^2*W^3-5
383 parses to
384 (+ (- (EXPT X 2) (EXPT Y 2)) (* (- (/ 4 3)) (EXPT U 2) (EXPT W 3)) (- 5))
385
386- lists of polynomials; for example
387 [X-Y, X^2+3*Z]
388 parses to
389 (:[ (- X Y) (+ (EXPT X 2) (* 3 Z)))
390 where the first symbol [ marks a list of polynomials.
391
392-other infix expressions, for example
393 [(X-Y)*(X+Y)/Z,(X+1)^2]
394parses to:
395 (:[ (/ (* (- X Y) (+ X Y)) Z) (EXPT (+ X 1) 2))
396Currently this function is implemented using M. Kantrowitz's INFIX package."
397 (read-from-string
398 (concatenate 'string
399 "#I("
400 (with-output-to-string (s)
401 (loop
402 (multiple-value-bind (line eof)
403 (read-line stream t)
404 (format s "~A" line)
405 (when eof (return)))))
406 ")")))
407
[1145]408(defun read-poly (vars &key
409 (stream t)
[1668]410 (ring +ring-of-integers+)
[1145]411 (order #'lex>))
[1067]412 "Reads an expression in prefix form from a stream STREAM.
[1144]413The expression read from the strem should represent a polynomial or a
414list of polynomials in variables VARS, over the ring RING. The
415polynomial or list of polynomials is returned, with terms in each
416polynomial ordered according to monomial order ORDER."
[1146]417 (poly-eval (read-infix-form :stream stream) vars ring order))
[1092]418
[1146]419(defun string->poly (str vars
[1164]420 &optional
[1668]421 (ring +ring-of-integers+)
[1146]422 (order #'lex>))
423 "Converts a string STR to a polynomial in variables VARS."
[1097]424 (with-input-from-string (s str)
[1165]425 (read-poly vars :stream s :ring ring :order order)))
[1095]426
[1143]427(defun poly->alist (p)
428 "Convert a polynomial P to an association list. Thus, the format of the
429returned value is ((MONOM[0] . COEFF[0]) (MONOM[1] . COEFF[1]) ...), where
430MONOM[I] is a list of exponents in the monomial and COEFF[I] is the
431corresponding coefficient in the ring."
[1171]432 (cond
433 ((poly-p p)
434 (mapcar #'term->cons (poly-termlist p)))
435 ((and (consp p) (eq (car p) :[))
[1172]436 (cons :[ (mapcar #'poly->alist (cdr p))))))
[1143]437
[1164]438(defun string->alist (str vars
439 &optional
[1668]440 (ring +ring-of-integers+)
[1164]441 (order #'lex>))
[1143]442 "Convert a string STR representing a polynomial or polynomial list to
[1158]443an association list (... (MONOM . COEFF) ...)."
[1166]444 (poly->alist (string->poly str vars ring order)))
[1440]445
446(defun poly-equal-no-sugar-p (p q)
447 "Compare polynomials for equality, ignoring sugar."
[1914]448 (declare (type poly p q))
[1440]449 (equalp (poly-termlist p) (poly-termlist q)))
[1559]450
451(defun poly-set-equal-no-sugar-p (p q)
452 "Compare polynomial sets P and Q for equality, ignoring sugar."
453 (null (set-exclusive-or p q :test #'poly-equal-no-sugar-p )))
[1560]454
455(defun poly-list-equal-no-sugar-p (p q)
456 "Compare polynomial lists P and Q for equality, ignoring sugar."
457 (every #'poly-equal-no-sugar-p p q))
[2456]458|#
Note: See TracBrowser for help on using the repository browser.