| [1201] | 1 | ;;; -*-  Mode: Lisp -*- 
 | 
|---|
| [77] | 2 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 | 
|---|
 | 3 | ;;;                                                                              
 | 
|---|
 | 4 | ;;;  Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>          
 | 
|---|
 | 5 | ;;;                                                                              
 | 
|---|
 | 6 | ;;;  This program is free software; you can redistribute it and/or modify        
 | 
|---|
 | 7 | ;;;  it under the terms of the GNU General Public License as published by        
 | 
|---|
 | 8 | ;;;  the Free Software Foundation; either version 2 of the License, or           
 | 
|---|
 | 9 | ;;;  (at your option) any later version.                                         
 | 
|---|
 | 10 | ;;;                                                                              
 | 
|---|
 | 11 | ;;;  This program is distributed in the hope that it will be useful,             
 | 
|---|
 | 12 | ;;;  but WITHOUT ANY WARRANTY; without even the implied warranty of              
 | 
|---|
 | 13 | ;;;  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the               
 | 
|---|
 | 14 | ;;;  GNU General Public License for more details.                                
 | 
|---|
 | 15 | ;;;                                                                              
 | 
|---|
 | 16 | ;;;  You should have received a copy of the GNU General Public License           
 | 
|---|
 | 17 | ;;;  along with this program; if not, write to the Free Software                 
 | 
|---|
 | 18 | ;;;  Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  
 | 
|---|
 | 19 | ;;;                                                                              
 | 
|---|
 | 20 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 | 
|---|
 | 21 | 
 | 
|---|
| [431] | 22 | (defpackage "POLYNOMIAL"
 | 
|---|
| [2462] | 23 |   (:use :cl :ring :monom :order :term #| :infix |# )
 | 
|---|
| [2596] | 24 |   (:export "POLY"
 | 
|---|
 | 25 |            "POLY-TERMLIST"
 | 
|---|
 | 26 |            "POLY-TERM-ORDER")
 | 
|---|
| [2522] | 27 |   (:documentation "Implements polynomials"))
 | 
|---|
| [143] | 28 | 
 | 
|---|
| [431] | 29 | (in-package :polynomial)
 | 
|---|
 | 30 | 
 | 
|---|
| [1927] | 31 | (proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0)))
 | 
|---|
| [52] | 32 | 
 | 
|---|
| [2442] | 33 | (defclass poly ()
 | 
|---|
| [2697] | 34 |   ((termlist :initarg :termlist :accessor poly-termlist
 | 
|---|
 | 35 |              :documentation "List of terms.")
 | 
|---|
 | 36 |    (order :initarg :order :accessor poly-term-order
 | 
|---|
 | 37 |           :documentation "Monomial/term order."))
 | 
|---|
| [2695] | 38 |   (:default-initargs :termlist nil :order #'lex>)
 | 
|---|
 | 39 |   (:documentation "A polynomial with a list of terms TERMLIST, ordered
 | 
|---|
| [2696] | 40 | according to term order ORDER, which defaults to LEX>."))
 | 
|---|
| [2442] | 41 | 
 | 
|---|
| [2471] | 42 | (defmethod print-object ((self poly) stream)
 | 
|---|
| [2600] | 43 |   (format stream "#<POLY TERMLIST=~A ORDER=~A>" 
 | 
|---|
| [2595] | 44 |           (poly-termlist self)
 | 
|---|
 | 45 |           (poly-term-order self)))
 | 
|---|
| [2469] | 46 | 
 | 
|---|
| [2650] | 47 | (defmethod r-equalp ((self poly) (other poly))
 | 
|---|
| [2680] | 48 |   "POLY instances are R-EQUALP if they have the same
 | 
|---|
 | 49 | order and if all terms are R-EQUALP."
 | 
|---|
| [2651] | 50 |   (and (every #'r-equalp (poly-termlist self) (poly-termlist other))
 | 
|---|
 | 51 |        (eq (poly-term-order self) (poly-term-order other))))
 | 
|---|
| [2650] | 52 | 
 | 
|---|
| [2513] | 53 | (defmethod insert-item ((self poly) (item term))
 | 
|---|
 | 54 |   (push item (poly-termlist self))
 | 
|---|
| [2514] | 55 |   self)
 | 
|---|
| [2464] | 56 | 
 | 
|---|
| [2513] | 57 | (defmethod append-item ((self poly) (item term))
 | 
|---|
 | 58 |   (setf (cdr (last (poly-termlist self))) (list item))
 | 
|---|
 | 59 |   self)
 | 
|---|
| [2466] | 60 | 
 | 
|---|
| [52] | 61 | ;; Leading term
 | 
|---|
| [2442] | 62 | (defgeneric leading-term (object)
 | 
|---|
 | 63 |   (:method ((self poly)) 
 | 
|---|
| [2525] | 64 |     (car (poly-termlist self)))
 | 
|---|
 | 65 |   (:documentation "The leading term of a polynomial, or NIL for zero polynomial."))
 | 
|---|
| [52] | 66 | 
 | 
|---|
 | 67 | ;; Second term
 | 
|---|
| [2442] | 68 | (defgeneric second-leading-term (object) 
 | 
|---|
 | 69 |   (:method ((self poly))
 | 
|---|
| [2525] | 70 |     (cadar (poly-termlist self)))
 | 
|---|
 | 71 |   (:documentation "The second leading term of a polynomial, or NIL for a polynomial with at most one term."))
 | 
|---|
| [52] | 72 | 
 | 
|---|
 | 73 | ;; Leading coefficient
 | 
|---|
| [2442] | 74 | (defgeneric leading-coefficient (object)
 | 
|---|
 | 75 |   (:method ((self poly))
 | 
|---|
| [2526] | 76 |     (r-coeff (leading-term self)))
 | 
|---|
| [2545] | 77 |   (:documentation "The leading coefficient of a polynomial. It signals error for a zero polynomial."))
 | 
|---|
| [52] | 78 | 
 | 
|---|
 | 79 | ;; Second coefficient
 | 
|---|
| [2442] | 80 | (defgeneric second-leading-coefficient (object)
 | 
|---|
 | 81 |   (:method ((self poly)) 
 | 
|---|
| [2526] | 82 |     (r-coeff (second-leading-term self)))
 | 
|---|
| [2544] | 83 |   (:documentation "The second leading coefficient of a polynomial. It signals error for a polynomial with at most one term."))
 | 
|---|
| [52] | 84 | 
 | 
|---|
 | 85 | ;; Testing for a zero polynomial
 | 
|---|
| [2445] | 86 | (defmethod r-zerop ((self poly))
 | 
|---|
 | 87 |   (null (poly-termlist self)))
 | 
|---|
| [52] | 88 | 
 | 
|---|
 | 89 | ;; The number of terms
 | 
|---|
| [2445] | 90 | (defmethod r-length ((self poly))
 | 
|---|
 | 91 |   (length (poly-termlist self)))
 | 
|---|
| [52] | 92 | 
 | 
|---|
| [2483] | 93 | (defmethod multiply-by ((self poly) (other monom))
 | 
|---|
| [2501] | 94 |   (mapc #'(lambda (term) (multiply-by term other))
 | 
|---|
 | 95 |         (poly-termlist self))
 | 
|---|
| [2483] | 96 |   self)
 | 
|---|
| [2469] | 97 | 
 | 
|---|
| [2501] | 98 | (defmethod multiply-by ((self poly) (other scalar))
 | 
|---|
| [2502] | 99 |   (mapc #'(lambda (term) (multiply-by term other))
 | 
|---|
| [2501] | 100 |         (poly-termlist self))
 | 
|---|
| [2487] | 101 |   self)
 | 
|---|
 | 102 | 
 | 
|---|
| [2607] | 103 | 
 | 
|---|
| [2739] | 104 | (defmacro fast-add/subtract (order-fn add/subtract-fun 
 | 
|---|
 | 105 |                              &optional 
 | 
|---|
 | 106 |                                (uminus-fun nil uminus-fun-supplied-p))
 | 
|---|
 | 107 |   "Return an expression which will efficiently of two polynomials. Implements an efficient
 | 
|---|
| [2682] | 108 | algorithm to add two polynomials represented as sorted lists of
 | 
|---|
 | 109 | terms. This function destroys both arguments, reusing the terms to
 | 
|---|
 | 110 | build the result."
 | 
|---|
| [2738] | 111 |   `(lambda (p q) 
 | 
|---|
 | 112 |      (macrolet ((lc (x) `(r-coeff (car ,x))))
 | 
|---|
 | 113 |        (do ((p p)
 | 
|---|
 | 114 |             (q q)
 | 
|---|
 | 115 |             r)
 | 
|---|
 | 116 |            ((or (endp p) (endp q))
 | 
|---|
 | 117 |             ;; NOTE: R contains the result in reverse order. Can it
 | 
|---|
 | 118 |             ;; be more efficient to produce the terms in correct order?
 | 
|---|
 | 119 |             (unless (endp q) (setf r (nreconc r q)))
 | 
|---|
 | 120 |             r)
 | 
|---|
 | 121 |          (multiple-value-bind 
 | 
|---|
 | 122 |                (greater-p equal-p)
 | 
|---|
 | 123 |              (funcall ,order-fn (car p) (car q))
 | 
|---|
 | 124 |            (cond
 | 
|---|
 | 125 |              (greater-p
 | 
|---|
 | 126 |               (rotatef (cdr p) r p)
 | 
|---|
 | 127 |               )
 | 
|---|
 | 128 |              (equal-p
 | 
|---|
 | 129 |               (let ((s (funcall ,add/subtract-fun (lc p) (lc q))))
 | 
|---|
 | 130 |                 (cond 
 | 
|---|
 | 131 |                   ((r-zerop s)
 | 
|---|
 | 132 |                    (setf p (cdr p))
 | 
|---|
 | 133 |                    )
 | 
|---|
 | 134 |                   (t 
 | 
|---|
 | 135 |                    (setf (lc p) s)
 | 
|---|
 | 136 |                    (rotatef (cdr p) r p))))
 | 
|---|
 | 137 |               (setf q (cdr q))
 | 
|---|
 | 138 |               )
 | 
|---|
 | 139 |              (t 
 | 
|---|
 | 140 |               ;;Negate the term of Q if UMINUS provided
 | 
|---|
 | 141 |               ,@(when uminus-fun-supplied-p
 | 
|---|
 | 142 |                       `((setf (lc q) (funcall ,uminus-fun (lc q)))))
 | 
|---|
 | 143 |               (rotatef (cdr q) r q))))))))
 | 
|---|
| [2585] | 144 | 
 | 
|---|
| [2655] | 145 | 
 | 
|---|
| [2615] | 146 | (defmacro def-additive-operation-method (method-name &optional (doc-string nil doc-string-supplied-p))
 | 
|---|
 | 147 |   "This macro avoids code duplication for two similar operations: ADD-TO and SUBTRACT-FROM."
 | 
|---|
| [2609] | 148 |   `(defmethod ,method-name ((self poly) (other poly))
 | 
|---|
| [2615] | 149 |      ,@(when doc-string-supplied-p `(,doc-string))
 | 
|---|
| [2609] | 150 |      (with-slots ((termlist1 termlist) (order1 order))
 | 
|---|
 | 151 |          self
 | 
|---|
 | 152 |        (with-slots ((termlist2 termlist) (order2 order))
 | 
|---|
 | 153 |            other
 | 
|---|
 | 154 |          ;; Ensure orders are compatible
 | 
|---|
 | 155 |          (unless (eq order1 order2)
 | 
|---|
 | 156 |            (setf termlist2 (sort termlist2 order1)
 | 
|---|
 | 157 |                  order2 order1))
 | 
|---|
| [2656] | 158 |          (setf termlist1 (fast-addition termlist1 termlist2 order1 #',method-name))))
 | 
|---|
| [2609] | 159 |      self))
 | 
|---|
| [2487] | 160 | 
 | 
|---|
| [2735] | 161 | (def-additive-operation-method add-to
 | 
|---|
 | 162 |     "Adds to polynomial SELF another polynomial OTHER.
 | 
|---|
| [2610] | 163 | This operation destructively modifies both polynomials.
 | 
|---|
 | 164 | The result is stored in SELF. This implementation does
 | 
|---|
 | 165 | no consing, entirely reusing the sells of SELF and OTHER.")
 | 
|---|
| [2609] | 166 | 
 | 
|---|
| [2735] | 167 | (def-additive-operation-method subtract-from
 | 
|---|
 | 168 |     "Subtracts from polynomial SELF another polynomial OTHER.
 | 
|---|
| [2610] | 169 | This operation destructively modifies both polynomials.
 | 
|---|
 | 170 | The result is stored in SELF. This implementation does
 | 
|---|
 | 171 | no consing, entirely reusing the sells of SELF and OTHER.")
 | 
|---|
 | 172 | 
 | 
|---|
| [2735] | 173 | 
 | 
|---|
| [2691] | 174 | (defmethod unary-minus ((self poly))
 | 
|---|
| [2694] | 175 |   "Destructively modifies the coefficients of the polynomial SELF,
 | 
|---|
 | 176 | by changing their sign."
 | 
|---|
| [2692] | 177 |   (mapc #'unary-minus (poly-termlist self))
 | 
|---|
| [2683] | 178 |   self)
 | 
|---|
| [52] | 179 | 
 | 
|---|
| [2727] | 180 | #|
 | 
|---|
 | 181 | 
 | 
|---|
| [52] | 182 | (defun poly-standard-extension (plist &aux (k (length plist)))
 | 
|---|
| [2716] | 183 |   "Calculate [U1*P1,U2*P2,...,UK*PK], where PLIST=[P1,P2,...,PK]
 | 
|---|
 | 184 | is a list of polynomials."
 | 
|---|
| [52] | 185 |   (declare (list plist) (fixnum k))
 | 
|---|
 | 186 |   (labels ((incf-power (g i)
 | 
|---|
 | 187 |              (dolist (x (poly-termlist g))
 | 
|---|
 | 188 |                (incf (monom-elt (term-monom x) i)))
 | 
|---|
 | 189 |              (incf (poly-sugar g))))
 | 
|---|
 | 190 |     (setf plist (poly-list-add-variables plist k))
 | 
|---|
 | 191 |     (dotimes (i k plist)
 | 
|---|
 | 192 |       (incf-power (nth i plist) i))))
 | 
|---|
 | 193 | 
 | 
|---|
| [2716] | 194 | 
 | 
|---|
| [2727] | 195 | 
 | 
|---|
| [1473] | 196 | (defun saturation-extension (ring f plist 
 | 
|---|
 | 197 |                              &aux 
 | 
|---|
 | 198 |                                (k (length plist))
 | 
|---|
| [1474] | 199 |                                (d (monom-dimension (poly-lm (car plist))))
 | 
|---|
 | 200 |                                f-x plist-x)
 | 
|---|
| [52] | 201 |   "Calculate [F, U1*P1-1,U2*P2-1,...,UK*PK-1], where PLIST=[P1,P2,...,PK]."
 | 
|---|
| [1907] | 202 |   (declare (type ring ring))
 | 
|---|
| [1474] | 203 |   (setf f-x (poly-list-add-variables f k)
 | 
|---|
 | 204 |         plist-x (mapcar #'(lambda (x)
 | 
|---|
| [1843] | 205 |                             (setf (poly-termlist x)
 | 
|---|
 | 206 |                                   (nconc (poly-termlist x)
 | 
|---|
 | 207 |                                          (list (make-term :monom (make-monom :dimension d)
 | 
|---|
| [1844] | 208 |                                                           :coeff (funcall (ring-uminus ring) 
 | 
|---|
 | 209 |                                                                           (funcall (ring-unit ring)))))))
 | 
|---|
| [1474] | 210 |                             x)
 | 
|---|
 | 211 |                         (poly-standard-extension plist)))
 | 
|---|
 | 212 |   (append f-x plist-x))
 | 
|---|
| [52] | 213 | 
 | 
|---|
 | 214 | 
 | 
|---|
| [1475] | 215 | (defun polysaturation-extension (ring f plist 
 | 
|---|
 | 216 |                                  &aux 
 | 
|---|
 | 217 |                                    (k (length plist))
 | 
|---|
| [1476] | 218 |                                    (d (+ k (monom-dimension (poly-lm (car plist)))))
 | 
|---|
| [1494] | 219 |                                    ;; Add k variables to f
 | 
|---|
| [1493] | 220 |                                    (f (poly-list-add-variables f k))
 | 
|---|
| [1495] | 221 |                                    ;; Set PLIST to [U1*P1,U2*P2,...,UK*PK]
 | 
|---|
| [1493] | 222 |                                    (plist (apply #'poly-append (poly-standard-extension plist))))
 | 
|---|
| [1497] | 223 |   "Calculate [F, U1*P1+U2*P2+...+UK*PK-1], where PLIST=[P1,P2,...,PK]. It destructively modifies F."
 | 
|---|
| [1493] | 224 |   ;; Add -1 as the last term
 | 
|---|
| [1908] | 225 |   (declare (type ring ring))
 | 
|---|
| [1493] | 226 |   (setf (cdr (last (poly-termlist plist)))
 | 
|---|
| [1845] | 227 |         (list (make-term :monom (make-monom :dimension d)
 | 
|---|
 | 228 |                          :coeff (funcall (ring-uminus ring) (funcall (ring-unit ring))))))
 | 
|---|
| [1493] | 229 |   (append f (list plist)))
 | 
|---|
| [52] | 230 | 
 | 
|---|
| [1477] | 231 | (defun saturation-extension-1 (ring f p) 
 | 
|---|
| [1497] | 232 |   "Calculate [F, U*P-1]. It destructively modifies F."
 | 
|---|
| [1908] | 233 |   (declare (type ring ring))
 | 
|---|
| [1477] | 234 |   (polysaturation-extension ring f (list p)))
 | 
|---|
| [53] | 235 | 
 | 
|---|
 | 236 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 | 
|---|
 | 237 | ;;
 | 
|---|
 | 238 | ;; Evaluation of polynomial (prefix) expressions
 | 
|---|
 | 239 | ;;
 | 
|---|
 | 240 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 | 
|---|
 | 241 | 
 | 
|---|
 | 242 | (defun coerce-coeff (ring expr vars)
 | 
|---|
 | 243 |   "Coerce an element of the coefficient ring to a constant polynomial."
 | 
|---|
 | 244 |   ;; Modular arithmetic handler by rat
 | 
|---|
| [1908] | 245 |   (declare (type ring ring))
 | 
|---|
| [1846] | 246 |   (make-poly-from-termlist (list (make-term :monom (make-monom :dimension (length vars))
 | 
|---|
 | 247 |                                             :coeff (funcall (ring-parse ring) expr)))
 | 
|---|
| [53] | 248 |                            0))
 | 
|---|
 | 249 | 
 | 
|---|
| [1046] | 250 | (defun poly-eval (expr vars 
 | 
|---|
 | 251 |                   &optional 
 | 
|---|
| [1668] | 252 |                     (ring +ring-of-integers+) 
 | 
|---|
| [1048] | 253 |                     (order #'lex>)
 | 
|---|
| [1170] | 254 |                     (list-marker :[)
 | 
|---|
| [1047] | 255 |                   &aux 
 | 
|---|
 | 256 |                     (ring-and-order (make-ring-and-order :ring ring :order order)))
 | 
|---|
| [1168] | 257 |   "Evaluate Lisp form EXPR to a polynomial or a list of polynomials in
 | 
|---|
| [1208] | 258 | variables VARS. Return the resulting polynomial or list of
 | 
|---|
 | 259 | polynomials.  Standard arithmetical operators in form EXPR are
 | 
|---|
 | 260 | replaced with their analogues in the ring of polynomials, and the
 | 
|---|
 | 261 | resulting expression is evaluated, resulting in a polynomial or a list
 | 
|---|
| [1209] | 262 | of polynomials in internal form. A similar operation in another computer
 | 
|---|
 | 263 | algebra system could be called 'expand' or so."
 | 
|---|
| [1909] | 264 |   (declare (type ring ring))
 | 
|---|
| [1050] | 265 |   (labels ((p-eval (arg) (poly-eval arg vars ring order))
 | 
|---|
| [1140] | 266 |            (p-eval-scalar (arg) (poly-eval-scalar arg))
 | 
|---|
| [53] | 267 |            (p-eval-list (args) (mapcar #'p-eval args))
 | 
|---|
| [989] | 268 |            (p-add (x y) (poly-add ring-and-order x y)))
 | 
|---|
| [53] | 269 |     (cond
 | 
|---|
| [1128] | 270 |       ((null expr) (error "Empty expression"))
 | 
|---|
| [53] | 271 |       ((eql expr 0) (make-poly-zero))
 | 
|---|
 | 272 |       ((member expr vars :test #'equalp)
 | 
|---|
 | 273 |        (let ((pos (position expr vars :test #'equalp)))
 | 
|---|
| [1657] | 274 |          (make-poly-variable ring (length vars) pos)))
 | 
|---|
| [53] | 275 |       ((atom expr)
 | 
|---|
 | 276 |        (coerce-coeff ring expr vars))
 | 
|---|
 | 277 |       ((eq (car expr) list-marker)
 | 
|---|
 | 278 |        (cons list-marker (p-eval-list (cdr expr))))
 | 
|---|
 | 279 |       (t
 | 
|---|
 | 280 |        (case (car expr)
 | 
|---|
 | 281 |          (+ (reduce #'p-add (p-eval-list (cdr expr))))
 | 
|---|
 | 282 |          (- (case (length expr)
 | 
|---|
 | 283 |               (1 (make-poly-zero))
 | 
|---|
 | 284 |               (2 (poly-uminus ring (p-eval (cadr expr))))
 | 
|---|
| [989] | 285 |               (3 (poly-sub ring-and-order (p-eval (cadr expr)) (p-eval (caddr expr))))
 | 
|---|
 | 286 |               (otherwise (poly-sub ring-and-order (p-eval (cadr expr))
 | 
|---|
| [53] | 287 |                                    (reduce #'p-add (p-eval-list (cddr expr)))))))
 | 
|---|
 | 288 |          (*
 | 
|---|
 | 289 |           (if (endp (cddr expr))                ;unary
 | 
|---|
 | 290 |               (p-eval (cdr expr))
 | 
|---|
| [989] | 291 |               (reduce #'(lambda (p q) (poly-mul ring-and-order p q)) (p-eval-list (cdr expr)))))
 | 
|---|
| [1106] | 292 |          (/ 
 | 
|---|
 | 293 |           ;; A polynomial can be divided by a scalar
 | 
|---|
| [1115] | 294 |           (cond 
 | 
|---|
 | 295 |             ((endp (cddr expr))
 | 
|---|
| [1117] | 296 |              ;; A special case (/ ?), the inverse
 | 
|---|
| [1119] | 297 |              (coerce-coeff ring (apply (ring-div ring) (cdr expr)) vars))
 | 
|---|
| [1128] | 298 |             (t
 | 
|---|
| [1115] | 299 |              (let ((num (p-eval (cadr expr)))
 | 
|---|
| [1142] | 300 |                    (denom-inverse (apply (ring-div ring)
 | 
|---|
 | 301 |                                          (cons (funcall (ring-unit ring)) 
 | 
|---|
 | 302 |                                                (mapcar #'p-eval-scalar (cddr expr))))))
 | 
|---|
| [1118] | 303 |                (scalar-times-poly ring denom-inverse num)))))
 | 
|---|
| [53] | 304 |          (expt
 | 
|---|
 | 305 |           (cond
 | 
|---|
 | 306 |             ((member (cadr expr) vars :test #'equalp)
 | 
|---|
 | 307 |              ;;Special handling of (expt var pow)
 | 
|---|
 | 308 |              (let ((pos (position (cadr expr) vars :test #'equalp)))
 | 
|---|
| [1657] | 309 |                (make-poly-variable ring (length vars) pos (caddr expr))))
 | 
|---|
| [53] | 310 |             ((not (and (integerp (caddr expr)) (plusp (caddr expr))))
 | 
|---|
 | 311 |              ;; Negative power means division in coefficient ring
 | 
|---|
 | 312 |              ;; Non-integer power means non-polynomial coefficient
 | 
|---|
 | 313 |              (coerce-coeff ring expr vars))
 | 
|---|
| [989] | 314 |             (t (poly-expt ring-and-order (p-eval (cadr expr)) (caddr expr)))))
 | 
|---|
| [53] | 315 |          (otherwise
 | 
|---|
 | 316 |           (coerce-coeff ring expr vars)))))))
 | 
|---|
 | 317 | 
 | 
|---|
| [1133] | 318 | (defun poly-eval-scalar (expr 
 | 
|---|
 | 319 |                          &optional
 | 
|---|
| [1668] | 320 |                            (ring +ring-of-integers+)
 | 
|---|
| [1133] | 321 |                          &aux 
 | 
|---|
 | 322 |                            (order #'lex>))
 | 
|---|
 | 323 |   "Evaluate a scalar expression EXPR in ring RING."
 | 
|---|
| [1910] | 324 |   (declare (type ring ring))
 | 
|---|
| [1133] | 325 |   (poly-lc (poly-eval expr nil ring order)))
 | 
|---|
 | 326 | 
 | 
|---|
| [1189] | 327 | (defun spoly (ring-and-order f g
 | 
|---|
 | 328 |               &aux
 | 
|---|
 | 329 |                 (ring (ro-ring ring-and-order)))
 | 
|---|
| [55] | 330 |   "It yields the S-polynomial of polynomials F and G."
 | 
|---|
| [1911] | 331 |   (declare (type ring-and-order ring-and-order) (type poly f g))
 | 
|---|
| [55] | 332 |   (let* ((lcm (monom-lcm (poly-lm f) (poly-lm g)))
 | 
|---|
 | 333 |           (mf (monom-div lcm (poly-lm f)))
 | 
|---|
 | 334 |           (mg (monom-div lcm (poly-lm g))))
 | 
|---|
 | 335 |     (declare (type monom mf mg))
 | 
|---|
 | 336 |     (multiple-value-bind (c cf cg)
 | 
|---|
 | 337 |         (funcall (ring-ezgcd ring) (poly-lc f) (poly-lc g))
 | 
|---|
 | 338 |       (declare (ignore c))
 | 
|---|
 | 339 |       (poly-sub 
 | 
|---|
| [1189] | 340 |        ring-and-order
 | 
|---|
| [55] | 341 |        (scalar-times-poly ring cg (monom-times-poly mf f))
 | 
|---|
 | 342 |        (scalar-times-poly ring cf (monom-times-poly mg g))))))
 | 
|---|
| [53] | 343 | 
 | 
|---|
 | 344 | 
 | 
|---|
| [55] | 345 | (defun poly-primitive-part (ring p)
 | 
|---|
 | 346 |   "Divide polynomial P with integer coefficients by gcd of its
 | 
|---|
 | 347 | coefficients and return the result."
 | 
|---|
| [1912] | 348 |   (declare (type ring ring) (type poly p))
 | 
|---|
| [55] | 349 |   (if (poly-zerop p)
 | 
|---|
 | 350 |       (values p 1)
 | 
|---|
 | 351 |     (let ((c (poly-content ring p)))
 | 
|---|
| [1203] | 352 |       (values (make-poly-from-termlist 
 | 
|---|
 | 353 |                (mapcar
 | 
|---|
 | 354 |                 #'(lambda (x)
 | 
|---|
| [1847] | 355 |                     (make-term :monom (term-monom x)
 | 
|---|
 | 356 |                                :coeff (funcall (ring-div ring) (term-coeff x) c)))
 | 
|---|
| [1203] | 357 |                 (poly-termlist p))
 | 
|---|
 | 358 |                (poly-sugar p))
 | 
|---|
 | 359 |               c))))
 | 
|---|
| [55] | 360 | 
 | 
|---|
 | 361 | (defun poly-content (ring p)
 | 
|---|
 | 362 |   "Greatest common divisor of the coefficients of the polynomial P. Use the RING structure
 | 
|---|
 | 363 | to compute the greatest common divisor."
 | 
|---|
| [1913] | 364 |   (declare (type ring ring) (type poly p))
 | 
|---|
| [55] | 365 |   (reduce (ring-gcd ring) (mapcar #'term-coeff (rest (poly-termlist p))) :initial-value (poly-lc p)))
 | 
|---|
| [1066] | 366 | 
 | 
|---|
| [1091] | 367 | (defun read-infix-form (&key (stream t))
 | 
|---|
| [1066] | 368 |   "Parser of infix expressions with integer/rational coefficients
 | 
|---|
 | 369 | The parser will recognize two kinds of polynomial expressions:
 | 
|---|
 | 370 | 
 | 
|---|
 | 371 | - polynomials in fully expanded forms with coefficients
 | 
|---|
 | 372 |   written in front of symbolic expressions; constants can be optionally
 | 
|---|
 | 373 |   enclosed in (); for example, the infix form
 | 
|---|
 | 374 |         X^2-Y^2+(-4/3)*U^2*W^3-5
 | 
|---|
 | 375 |   parses to
 | 
|---|
 | 376 |         (+ (- (EXPT X 2) (EXPT Y 2)) (* (- (/ 4 3)) (EXPT U 2) (EXPT W 3)) (- 5))
 | 
|---|
 | 377 | 
 | 
|---|
 | 378 | - lists of polynomials; for example
 | 
|---|
 | 379 |         [X-Y, X^2+3*Z]          
 | 
|---|
 | 380 |   parses to
 | 
|---|
 | 381 |           (:[ (- X Y) (+ (EXPT X 2) (* 3 Z)))
 | 
|---|
 | 382 |   where the first symbol [ marks a list of polynomials.
 | 
|---|
 | 383 | 
 | 
|---|
 | 384 | -other infix expressions, for example
 | 
|---|
 | 385 |         [(X-Y)*(X+Y)/Z,(X+1)^2]
 | 
|---|
 | 386 | parses to:
 | 
|---|
 | 387 |         (:[ (/ (* (- X Y) (+ X Y)) Z) (EXPT (+ X 1) 2))
 | 
|---|
 | 388 | Currently this function is implemented using M. Kantrowitz's INFIX package."
 | 
|---|
 | 389 |   (read-from-string
 | 
|---|
 | 390 |    (concatenate 'string
 | 
|---|
 | 391 |      "#I(" 
 | 
|---|
 | 392 |      (with-output-to-string (s)
 | 
|---|
 | 393 |        (loop
 | 
|---|
 | 394 |          (multiple-value-bind (line eof)
 | 
|---|
 | 395 |              (read-line stream t)
 | 
|---|
 | 396 |            (format s "~A" line)
 | 
|---|
 | 397 |            (when eof (return)))))
 | 
|---|
 | 398 |      ")")))
 | 
|---|
 | 399 |         
 | 
|---|
| [1145] | 400 | (defun read-poly (vars &key
 | 
|---|
 | 401 |                          (stream t) 
 | 
|---|
| [1668] | 402 |                          (ring +ring-of-integers+) 
 | 
|---|
| [1145] | 403 |                          (order #'lex>))
 | 
|---|
| [1067] | 404 |   "Reads an expression in prefix form from a stream STREAM.
 | 
|---|
| [1144] | 405 | The expression read from the strem should represent a polynomial or a
 | 
|---|
 | 406 | list of polynomials in variables VARS, over the ring RING.  The
 | 
|---|
 | 407 | polynomial or list of polynomials is returned, with terms in each
 | 
|---|
 | 408 | polynomial ordered according to monomial order ORDER."
 | 
|---|
| [1146] | 409 |   (poly-eval (read-infix-form :stream stream) vars ring order))
 | 
|---|
| [1092] | 410 | 
 | 
|---|
| [1146] | 411 | (defun string->poly (str vars 
 | 
|---|
| [1164] | 412 |                      &optional
 | 
|---|
| [1668] | 413 |                        (ring +ring-of-integers+) 
 | 
|---|
| [1146] | 414 |                        (order #'lex>))
 | 
|---|
 | 415 |   "Converts a string STR to a polynomial in variables VARS."
 | 
|---|
| [1097] | 416 |   (with-input-from-string (s str)
 | 
|---|
| [1165] | 417 |     (read-poly vars :stream s :ring ring :order order)))
 | 
|---|
| [1095] | 418 | 
 | 
|---|
| [1143] | 419 | (defun poly->alist (p)
 | 
|---|
 | 420 |   "Convert a polynomial P to an association list. Thus, the format of the
 | 
|---|
 | 421 | returned value is  ((MONOM[0] . COEFF[0]) (MONOM[1] . COEFF[1]) ...), where
 | 
|---|
 | 422 | MONOM[I] is a list of exponents in the monomial and COEFF[I] is the
 | 
|---|
 | 423 | corresponding coefficient in the ring."
 | 
|---|
| [1171] | 424 |   (cond
 | 
|---|
 | 425 |     ((poly-p p)
 | 
|---|
 | 426 |      (mapcar #'term->cons (poly-termlist p)))
 | 
|---|
 | 427 |     ((and (consp p) (eq (car p) :[))
 | 
|---|
| [1172] | 428 |      (cons :[ (mapcar #'poly->alist (cdr p))))))
 | 
|---|
| [1143] | 429 | 
 | 
|---|
| [1164] | 430 | (defun string->alist (str vars
 | 
|---|
 | 431 |                      &optional
 | 
|---|
| [1668] | 432 |                        (ring +ring-of-integers+) 
 | 
|---|
| [1164] | 433 |                        (order #'lex>))
 | 
|---|
| [1143] | 434 |   "Convert a string STR representing a polynomial or polynomial list to
 | 
|---|
| [1158] | 435 | an association list (... (MONOM . COEFF) ...)."
 | 
|---|
| [1166] | 436 |   (poly->alist (string->poly str vars ring order)))
 | 
|---|
| [1440] | 437 | 
 | 
|---|
 | 438 | (defun poly-equal-no-sugar-p (p q)
 | 
|---|
 | 439 |   "Compare polynomials for equality, ignoring sugar."
 | 
|---|
| [1914] | 440 |   (declare (type poly p q))
 | 
|---|
| [1440] | 441 |   (equalp (poly-termlist p) (poly-termlist q)))
 | 
|---|
| [1559] | 442 | 
 | 
|---|
 | 443 | (defun poly-set-equal-no-sugar-p (p q)
 | 
|---|
 | 444 |   "Compare polynomial sets P and Q for equality, ignoring sugar."
 | 
|---|
 | 445 |   (null (set-exclusive-or  p q :test #'poly-equal-no-sugar-p )))
 | 
|---|
| [1560] | 446 | 
 | 
|---|
 | 447 | (defun poly-list-equal-no-sugar-p (p q)
 | 
|---|
 | 448 |   "Compare polynomial lists P and Q for equality, ignoring sugar."
 | 
|---|
 | 449 |   (every #'poly-equal-no-sugar-p p q))
 | 
|---|
| [2456] | 450 | |#
 | 
|---|