close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/polynomial.lisp@ 2652

Last change on this file since 2652 was 2651, checked in by Marek Rychlik, 10 years ago

* empty log message *

File size: 15.0 KB
RevLine 
[1201]1;;; -*- Mode: Lisp -*-
[77]2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
[431]22(defpackage "POLYNOMIAL"
[2462]23 (:use :cl :ring :monom :order :term #| :infix |# )
[2596]24 (:export "POLY"
25 "POLY-TERMLIST"
26 "POLY-TERM-ORDER")
[2522]27 (:documentation "Implements polynomials"))
[143]28
[431]29(in-package :polynomial)
30
[1927]31(proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0)))
[52]32
[2442]33(defclass poly ()
[2595]34 ((termlist :initarg :termlist :accessor poly-termlist)
35 (order :initarg :order :accessor poly-term-order))
36 (:default-initargs :termlist nil :order #'lex>))
[2442]37
[2471]38(defmethod print-object ((self poly) stream)
[2600]39 (format stream "#<POLY TERMLIST=~A ORDER=~A>"
[2595]40 (poly-termlist self)
41 (poly-term-order self)))
[2469]42
[2650]43(defmethod r-equalp ((self poly) (other poly))
[2651]44 (and (every #'r-equalp (poly-termlist self) (poly-termlist other))
45 (eq (poly-term-order self) (poly-term-order other))))
[2650]46
[2513]47(defmethod insert-item ((self poly) (item term))
48 (push item (poly-termlist self))
[2514]49 self)
[2464]50
[2513]51(defmethod append-item ((self poly) (item term))
52 (setf (cdr (last (poly-termlist self))) (list item))
53 self)
[2466]54
[52]55;; Leading term
[2442]56(defgeneric leading-term (object)
57 (:method ((self poly))
[2525]58 (car (poly-termlist self)))
59 (:documentation "The leading term of a polynomial, or NIL for zero polynomial."))
[52]60
61;; Second term
[2442]62(defgeneric second-leading-term (object)
63 (:method ((self poly))
[2525]64 (cadar (poly-termlist self)))
65 (:documentation "The second leading term of a polynomial, or NIL for a polynomial with at most one term."))
[52]66
67;; Leading coefficient
[2442]68(defgeneric leading-coefficient (object)
69 (:method ((self poly))
[2526]70 (r-coeff (leading-term self)))
[2545]71 (:documentation "The leading coefficient of a polynomial. It signals error for a zero polynomial."))
[52]72
73;; Second coefficient
[2442]74(defgeneric second-leading-coefficient (object)
75 (:method ((self poly))
[2526]76 (r-coeff (second-leading-term self)))
[2544]77 (:documentation "The second leading coefficient of a polynomial. It signals error for a polynomial with at most one term."))
[52]78
79;; Testing for a zero polynomial
[2445]80(defmethod r-zerop ((self poly))
81 (null (poly-termlist self)))
[52]82
83;; The number of terms
[2445]84(defmethod r-length ((self poly))
85 (length (poly-termlist self)))
[52]86
[2483]87(defmethod multiply-by ((self poly) (other monom))
[2501]88 (mapc #'(lambda (term) (multiply-by term other))
89 (poly-termlist self))
[2483]90 self)
[2469]91
[2501]92(defmethod multiply-by ((self poly) (other scalar))
[2502]93 (mapc #'(lambda (term) (multiply-by term other))
[2501]94 (poly-termlist self))
[2487]95 self)
96
[2607]97
[2608]98(defun fast-addition (p q order-fn add-fun)
[2604]99 (macrolet ((lt (x) `(cadr ,x))
100 (lc (x) `(r-coeff (cadr ,x))))
101 (do ((p p)
102 (q q))
[2628]103 ((or (endp (cdr p)) (endp (cdr q)))
104 (when (endp (cdr p))
[2629]105 (rotatef (cdr p) (cdr q))))
[2604]106 (multiple-value-bind
107 (greater-p equal-p)
108 (funcall order-fn (lt q) (lt p))
109 (cond
110 (greater-p
111 (rotatef (cdr p) (cdr q)))
112 (equal-p
[2607]113 (let ((s (funcall add-fun (lc p) (lc q))))
[2604]114 (if (r-zerop s)
[2636]115 (setf (cdr p) (cddr p)
116 q (cdr q))
[2604]117 (setf (lc p) s
[2635]118 q (cdr q)))))))
119 (setf p (cdr p)))))
[2585]120
[2615]121(defmacro def-additive-operation-method (method-name &optional (doc-string nil doc-string-supplied-p))
122 "This macro avoids code duplication for two similar operations: ADD-TO and SUBTRACT-FROM."
[2609]123 `(defmethod ,method-name ((self poly) (other poly))
[2615]124 ,@(when doc-string-supplied-p `(,doc-string))
[2609]125 (with-slots ((termlist1 termlist) (order1 order))
126 self
127 (with-slots ((termlist2 termlist) (order2 order))
128 other
129 ;; Ensure orders are compatible
130 (unless (eq order1 order2)
131 (setf termlist2 (sort termlist2 order1)
132 order2 order1))
133 ;; Create dummy head
134 (push nil termlist1)
135 (push nil termlist2)
136 (fast-addition termlist1 termlist2 order1 #',method-name)
137 ;; Remove dummy head
138 (pop termlist1)))
139 self))
[2487]140
[2610]141(def-additive-operation-method add-to
142 "Adds to polynomial SELF another polynomial OTHER.
143This operation destructively modifies both polynomials.
144The result is stored in SELF. This implementation does
145no consing, entirely reusing the sells of SELF and OTHER.")
[2609]146
[2610]147(def-additive-operation-method subtract-from
148 "Subtracts from polynomial SELF another polynomial OTHER.
149This operation destructively modifies both polynomials.
150The result is stored in SELF. This implementation does
151no consing, entirely reusing the sells of SELF and OTHER.")
152
[2500]153(defmethod unary-uminus ((self poly)))
[52]154
[2486]155#|
156
[52]157(defun poly-standard-extension (plist &aux (k (length plist)))
158 "Calculate [U1*P1,U2*P2,...,UK*PK], where PLIST=[P1,P2,...,PK]."
159 (declare (list plist) (fixnum k))
160 (labels ((incf-power (g i)
161 (dolist (x (poly-termlist g))
162 (incf (monom-elt (term-monom x) i)))
163 (incf (poly-sugar g))))
164 (setf plist (poly-list-add-variables plist k))
165 (dotimes (i k plist)
166 (incf-power (nth i plist) i))))
167
[1473]168(defun saturation-extension (ring f plist
169 &aux
170 (k (length plist))
[1474]171 (d (monom-dimension (poly-lm (car plist))))
172 f-x plist-x)
[52]173 "Calculate [F, U1*P1-1,U2*P2-1,...,UK*PK-1], where PLIST=[P1,P2,...,PK]."
[1907]174 (declare (type ring ring))
[1474]175 (setf f-x (poly-list-add-variables f k)
176 plist-x (mapcar #'(lambda (x)
[1843]177 (setf (poly-termlist x)
178 (nconc (poly-termlist x)
179 (list (make-term :monom (make-monom :dimension d)
[1844]180 :coeff (funcall (ring-uminus ring)
181 (funcall (ring-unit ring)))))))
[1474]182 x)
183 (poly-standard-extension plist)))
184 (append f-x plist-x))
[52]185
186
[1475]187(defun polysaturation-extension (ring f plist
188 &aux
189 (k (length plist))
[1476]190 (d (+ k (monom-dimension (poly-lm (car plist)))))
[1494]191 ;; Add k variables to f
[1493]192 (f (poly-list-add-variables f k))
[1495]193 ;; Set PLIST to [U1*P1,U2*P2,...,UK*PK]
[1493]194 (plist (apply #'poly-append (poly-standard-extension plist))))
[1497]195 "Calculate [F, U1*P1+U2*P2+...+UK*PK-1], where PLIST=[P1,P2,...,PK]. It destructively modifies F."
[1493]196 ;; Add -1 as the last term
[1908]197 (declare (type ring ring))
[1493]198 (setf (cdr (last (poly-termlist plist)))
[1845]199 (list (make-term :monom (make-monom :dimension d)
200 :coeff (funcall (ring-uminus ring) (funcall (ring-unit ring))))))
[1493]201 (append f (list plist)))
[52]202
[1477]203(defun saturation-extension-1 (ring f p)
[1497]204 "Calculate [F, U*P-1]. It destructively modifies F."
[1908]205 (declare (type ring ring))
[1477]206 (polysaturation-extension ring f (list p)))
[53]207
208;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
209;;
210;; Evaluation of polynomial (prefix) expressions
211;;
212;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
213
214(defun coerce-coeff (ring expr vars)
215 "Coerce an element of the coefficient ring to a constant polynomial."
216 ;; Modular arithmetic handler by rat
[1908]217 (declare (type ring ring))
[1846]218 (make-poly-from-termlist (list (make-term :monom (make-monom :dimension (length vars))
219 :coeff (funcall (ring-parse ring) expr)))
[53]220 0))
221
[1046]222(defun poly-eval (expr vars
223 &optional
[1668]224 (ring +ring-of-integers+)
[1048]225 (order #'lex>)
[1170]226 (list-marker :[)
[1047]227 &aux
228 (ring-and-order (make-ring-and-order :ring ring :order order)))
[1168]229 "Evaluate Lisp form EXPR to a polynomial or a list of polynomials in
[1208]230variables VARS. Return the resulting polynomial or list of
231polynomials. Standard arithmetical operators in form EXPR are
232replaced with their analogues in the ring of polynomials, and the
233resulting expression is evaluated, resulting in a polynomial or a list
[1209]234of polynomials in internal form. A similar operation in another computer
235algebra system could be called 'expand' or so."
[1909]236 (declare (type ring ring))
[1050]237 (labels ((p-eval (arg) (poly-eval arg vars ring order))
[1140]238 (p-eval-scalar (arg) (poly-eval-scalar arg))
[53]239 (p-eval-list (args) (mapcar #'p-eval args))
[989]240 (p-add (x y) (poly-add ring-and-order x y)))
[53]241 (cond
[1128]242 ((null expr) (error "Empty expression"))
[53]243 ((eql expr 0) (make-poly-zero))
244 ((member expr vars :test #'equalp)
245 (let ((pos (position expr vars :test #'equalp)))
[1657]246 (make-poly-variable ring (length vars) pos)))
[53]247 ((atom expr)
248 (coerce-coeff ring expr vars))
249 ((eq (car expr) list-marker)
250 (cons list-marker (p-eval-list (cdr expr))))
251 (t
252 (case (car expr)
253 (+ (reduce #'p-add (p-eval-list (cdr expr))))
254 (- (case (length expr)
255 (1 (make-poly-zero))
256 (2 (poly-uminus ring (p-eval (cadr expr))))
[989]257 (3 (poly-sub ring-and-order (p-eval (cadr expr)) (p-eval (caddr expr))))
258 (otherwise (poly-sub ring-and-order (p-eval (cadr expr))
[53]259 (reduce #'p-add (p-eval-list (cddr expr)))))))
260 (*
261 (if (endp (cddr expr)) ;unary
262 (p-eval (cdr expr))
[989]263 (reduce #'(lambda (p q) (poly-mul ring-and-order p q)) (p-eval-list (cdr expr)))))
[1106]264 (/
265 ;; A polynomial can be divided by a scalar
[1115]266 (cond
267 ((endp (cddr expr))
[1117]268 ;; A special case (/ ?), the inverse
[1119]269 (coerce-coeff ring (apply (ring-div ring) (cdr expr)) vars))
[1128]270 (t
[1115]271 (let ((num (p-eval (cadr expr)))
[1142]272 (denom-inverse (apply (ring-div ring)
273 (cons (funcall (ring-unit ring))
274 (mapcar #'p-eval-scalar (cddr expr))))))
[1118]275 (scalar-times-poly ring denom-inverse num)))))
[53]276 (expt
277 (cond
278 ((member (cadr expr) vars :test #'equalp)
279 ;;Special handling of (expt var pow)
280 (let ((pos (position (cadr expr) vars :test #'equalp)))
[1657]281 (make-poly-variable ring (length vars) pos (caddr expr))))
[53]282 ((not (and (integerp (caddr expr)) (plusp (caddr expr))))
283 ;; Negative power means division in coefficient ring
284 ;; Non-integer power means non-polynomial coefficient
285 (coerce-coeff ring expr vars))
[989]286 (t (poly-expt ring-and-order (p-eval (cadr expr)) (caddr expr)))))
[53]287 (otherwise
288 (coerce-coeff ring expr vars)))))))
289
[1133]290(defun poly-eval-scalar (expr
291 &optional
[1668]292 (ring +ring-of-integers+)
[1133]293 &aux
294 (order #'lex>))
295 "Evaluate a scalar expression EXPR in ring RING."
[1910]296 (declare (type ring ring))
[1133]297 (poly-lc (poly-eval expr nil ring order)))
298
[1189]299(defun spoly (ring-and-order f g
300 &aux
301 (ring (ro-ring ring-and-order)))
[55]302 "It yields the S-polynomial of polynomials F and G."
[1911]303 (declare (type ring-and-order ring-and-order) (type poly f g))
[55]304 (let* ((lcm (monom-lcm (poly-lm f) (poly-lm g)))
305 (mf (monom-div lcm (poly-lm f)))
306 (mg (monom-div lcm (poly-lm g))))
307 (declare (type monom mf mg))
308 (multiple-value-bind (c cf cg)
309 (funcall (ring-ezgcd ring) (poly-lc f) (poly-lc g))
310 (declare (ignore c))
311 (poly-sub
[1189]312 ring-and-order
[55]313 (scalar-times-poly ring cg (monom-times-poly mf f))
314 (scalar-times-poly ring cf (monom-times-poly mg g))))))
[53]315
316
[55]317(defun poly-primitive-part (ring p)
318 "Divide polynomial P with integer coefficients by gcd of its
319coefficients and return the result."
[1912]320 (declare (type ring ring) (type poly p))
[55]321 (if (poly-zerop p)
322 (values p 1)
323 (let ((c (poly-content ring p)))
[1203]324 (values (make-poly-from-termlist
325 (mapcar
326 #'(lambda (x)
[1847]327 (make-term :monom (term-monom x)
328 :coeff (funcall (ring-div ring) (term-coeff x) c)))
[1203]329 (poly-termlist p))
330 (poly-sugar p))
331 c))))
[55]332
333(defun poly-content (ring p)
334 "Greatest common divisor of the coefficients of the polynomial P. Use the RING structure
335to compute the greatest common divisor."
[1913]336 (declare (type ring ring) (type poly p))
[55]337 (reduce (ring-gcd ring) (mapcar #'term-coeff (rest (poly-termlist p))) :initial-value (poly-lc p)))
[1066]338
[1091]339(defun read-infix-form (&key (stream t))
[1066]340 "Parser of infix expressions with integer/rational coefficients
341The parser will recognize two kinds of polynomial expressions:
342
343- polynomials in fully expanded forms with coefficients
344 written in front of symbolic expressions; constants can be optionally
345 enclosed in (); for example, the infix form
346 X^2-Y^2+(-4/3)*U^2*W^3-5
347 parses to
348 (+ (- (EXPT X 2) (EXPT Y 2)) (* (- (/ 4 3)) (EXPT U 2) (EXPT W 3)) (- 5))
349
350- lists of polynomials; for example
351 [X-Y, X^2+3*Z]
352 parses to
353 (:[ (- X Y) (+ (EXPT X 2) (* 3 Z)))
354 where the first symbol [ marks a list of polynomials.
355
356-other infix expressions, for example
357 [(X-Y)*(X+Y)/Z,(X+1)^2]
358parses to:
359 (:[ (/ (* (- X Y) (+ X Y)) Z) (EXPT (+ X 1) 2))
360Currently this function is implemented using M. Kantrowitz's INFIX package."
361 (read-from-string
362 (concatenate 'string
363 "#I("
364 (with-output-to-string (s)
365 (loop
366 (multiple-value-bind (line eof)
367 (read-line stream t)
368 (format s "~A" line)
369 (when eof (return)))))
370 ")")))
371
[1145]372(defun read-poly (vars &key
373 (stream t)
[1668]374 (ring +ring-of-integers+)
[1145]375 (order #'lex>))
[1067]376 "Reads an expression in prefix form from a stream STREAM.
[1144]377The expression read from the strem should represent a polynomial or a
378list of polynomials in variables VARS, over the ring RING. The
379polynomial or list of polynomials is returned, with terms in each
380polynomial ordered according to monomial order ORDER."
[1146]381 (poly-eval (read-infix-form :stream stream) vars ring order))
[1092]382
[1146]383(defun string->poly (str vars
[1164]384 &optional
[1668]385 (ring +ring-of-integers+)
[1146]386 (order #'lex>))
387 "Converts a string STR to a polynomial in variables VARS."
[1097]388 (with-input-from-string (s str)
[1165]389 (read-poly vars :stream s :ring ring :order order)))
[1095]390
[1143]391(defun poly->alist (p)
392 "Convert a polynomial P to an association list. Thus, the format of the
393returned value is ((MONOM[0] . COEFF[0]) (MONOM[1] . COEFF[1]) ...), where
394MONOM[I] is a list of exponents in the monomial and COEFF[I] is the
395corresponding coefficient in the ring."
[1171]396 (cond
397 ((poly-p p)
398 (mapcar #'term->cons (poly-termlist p)))
399 ((and (consp p) (eq (car p) :[))
[1172]400 (cons :[ (mapcar #'poly->alist (cdr p))))))
[1143]401
[1164]402(defun string->alist (str vars
403 &optional
[1668]404 (ring +ring-of-integers+)
[1164]405 (order #'lex>))
[1143]406 "Convert a string STR representing a polynomial or polynomial list to
[1158]407an association list (... (MONOM . COEFF) ...)."
[1166]408 (poly->alist (string->poly str vars ring order)))
[1440]409
410(defun poly-equal-no-sugar-p (p q)
411 "Compare polynomials for equality, ignoring sugar."
[1914]412 (declare (type poly p q))
[1440]413 (equalp (poly-termlist p) (poly-termlist q)))
[1559]414
415(defun poly-set-equal-no-sugar-p (p q)
416 "Compare polynomial sets P and Q for equality, ignoring sugar."
417 (null (set-exclusive-or p q :test #'poly-equal-no-sugar-p )))
[1560]418
419(defun poly-list-equal-no-sugar-p (p q)
420 "Compare polynomial lists P and Q for equality, ignoring sugar."
421 (every #'poly-equal-no-sugar-p p q))
[2456]422|#
Note: See TracBrowser for help on using the repository browser.