close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/polynomial.lisp@ 1662

Last change on this file since 1662 was 1657, checked in by Marek Rychlik, 10 years ago

* empty log message *

File size: 16.6 KB
RevLine 
[1201]1;;; -*- Mode: Lisp -*-
[77]2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
22
[431]23(defpackage "POLYNOMIAL"
[1606]24 (:use :cl :ring :ring-and-order :monom :order :term :termlist :infix)
[432]25 (:export "POLY"
26 "POLY-TERMLIST"
27 "POLY-SUGAR"
[1218]28 "POLY-RESET-SUGAR"
[432]29 "POLY-LT"
[433]30 "MAKE-POLY-FROM-TERMLIST"
31 "MAKE-POLY-ZERO"
[1657]32 "MAKE-POLY-VARIABLE"
[433]33 "POLY-UNIT"
34 "POLY-LM"
35 "POLY-SECOND-LM"
36 "POLY-SECOND-LT"
37 "POLY-LC"
38 "POLY-SECOND-LC"
39 "POLY-ZEROP"
[458]40 "POLY-LENGTH"
[433]41 "SCALAR-TIMES-POLY"
42 "SCALAR-TIMES-POLY-1"
43 "MONOM-TIMES-POLY"
44 "TERM-TIMES-POLY"
45 "POLY-ADD"
46 "POLY-SUB"
47 "POLY-UMINUS"
48 "POLY-MUL"
49 "POLY-EXPT"
50 "POLY-APPEND"
51 "POLY-NREVERSE"
[1266]52 "POLY-REVERSE"
[433]53 "POLY-CONTRACT"
54 "POLY-EXTEND"
55 "POLY-ADD-VARIABLES"
56 "POLY-LIST-ADD-VARIABLES"
57 "POLY-STANDARD-EXTENSION"
58 "SATURATION-EXTENSION"
59 "POLYSATURATION-EXTENSION"
60 "SATURATION-EXTENSION-1"
61 "COERCE-COEFF"
62 "POLY-EVAL"
[1134]63 "POLY-EVAL-SCALAR"
[433]64 "SPOLY"
65 "POLY-PRIMITIVE-PART"
66 "POLY-CONTENT"
[1085]67 "READ-INFIX-FORM"
[1093]68 "READ-POLY"
[1104]69 "STRING->POLY"
[1159]70 "POLY->ALIST"
71 "STRING->ALIST"
[1441]72 "POLY-EQUAL-NO-SUGAR-P"
[1561]73 "POLY-SET-EQUAL-NO-SUGAR-P"
74 "POLY-LIST-EQUAL-NO-SUGAR-P"
[432]75 ))
[143]76
[431]77(in-package :polynomial)
78
[52]79;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
80;;
81;; Polynomials
82;;
83;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
84
85(defstruct (poly
86 ;;
87 ;; BOA constructor, by default constructs zero polynomial
88 (:constructor make-poly-from-termlist (termlist &optional (sugar (termlist-sugar termlist))))
89 (:constructor make-poly-zero (&aux (termlist nil) (sugar -1)))
90 ;; Constructor of polynomials representing a variable
[1657]91 (:constructor make-poly-variable (ring nvars pos &optional (power 1)
[53]92 &aux
93 (termlist (list
94 (make-term-variable ring nvars pos power)))
95 (sugar power)))
96 (:constructor poly-unit (ring dimension
97 &aux
98 (termlist (termlist-unit ring dimension))
99 (sugar 0))))
[52]100 (termlist nil :type list)
101 (sugar -1 :type fixnum))
102
103;; Leading term
104(defmacro poly-lt (p) `(car (poly-termlist ,p)))
105
106;; Second term
107(defmacro poly-second-lt (p) `(cadar (poly-termlist ,p)))
108
109;; Leading monomial
110(defun poly-lm (p) (term-monom (poly-lt p)))
111
112;; Second monomial
113(defun poly-second-lm (p) (term-monom (poly-second-lt p)))
114
115;; Leading coefficient
116(defun poly-lc (p) (term-coeff (poly-lt p)))
117
118;; Second coefficient
119(defun poly-second-lc (p) (term-coeff (poly-second-lt p)))
120
121;; Testing for a zero polynomial
122(defun poly-zerop (p) (null (poly-termlist p)))
123
124;; The number of terms
125(defun poly-length (p) (length (poly-termlist p)))
126
[1215]127(defun poly-reset-sugar (p)
[1217]128 "(Re)sets the sugar of a polynomial P to the sugar of (POLY-TERMLIST P).
129Thus, the sugar is set to the maximum sugar of all monomials of P, or -1
130if P is a zero polynomial."
[1215]131 (declare (type poly p))
[1216]132 (setf (poly-sugar p) (termlist-sugar (poly-termlist p)))
133 p)
[1215]134
[52]135(defun scalar-times-poly (ring c p)
[1214]136 "The scalar product of scalar C by a polynomial P. The sugar of the
137original polynomial becomes the sugar of the result."
[1215]138 (declare (type ring ring) (type poly p))
[52]139 (make-poly-from-termlist (scalar-times-termlist ring c (poly-termlist p)) (poly-sugar p)))
140
141(defun scalar-times-poly-1 (ring c p)
[1213]142 "The scalar product of scalar C by a polynomial P, omitting the head term. The sugar of the
143original polynomial becomes the sugar of the result."
[1215]144 (declare (type ring ring) (type poly p))
[52]145 (make-poly-from-termlist (scalar-times-termlist ring c (cdr (poly-termlist p))) (poly-sugar p)))
[53]146
[52]147(defun monom-times-poly (m p)
[1215]148 (declare (type poly p))
[980]149 (make-poly-from-termlist
150 (monom-times-termlist m (poly-termlist p))
151 (+ (poly-sugar p) (monom-sugar m))))
[52]152
153(defun term-times-poly (ring term p)
[982]154 (declare (type ring ring) (type term term) (type poly p))
[979]155 (make-poly-from-termlist
156 (term-times-termlist ring term (poly-termlist p))
157 (+ (poly-sugar p) (term-sugar term))))
[52]158
[978]159(defun poly-add (ring-and-order p q)
[980]160 (declare (type ring-and-order ring-and-order) (type poly p q))
[978]161 (make-poly-from-termlist
162 (termlist-add ring-and-order
163 (poly-termlist p)
164 (poly-termlist q))
165 (max (poly-sugar p) (poly-sugar q))))
[52]166
[980]167(defun poly-sub (ring-and-order p q)
168 (declare (type ring-and-order ring-and-order) (type poly p q))
169 (make-poly-from-termlist
[990]170 (termlist-sub ring-and-order (poly-termlist p) (poly-termlist q))
[980]171 (max (poly-sugar p) (poly-sugar q))))
[52]172
173(defun poly-uminus (ring p)
[983]174 (declare (type ring ring) (type poly p))
175 (make-poly-from-termlist
176 (termlist-uminus ring (poly-termlist p))
177 (poly-sugar p)))
[52]178
[984]179(defun poly-mul (ring-and-order p q)
180 (declare (type ring-and-order ring-and-order) (type poly p q))
181 (make-poly-from-termlist
[991]182 (termlist-mul ring-and-order (poly-termlist p) (poly-termlist q))
[984]183 (+ (poly-sugar p) (poly-sugar q))))
[52]184
[985]185(defun poly-expt (ring-and-order p n)
186 (declare (type ring-and-order ring-and-order) (type poly p))
[992]187 (make-poly-from-termlist (termlist-expt ring-and-order (poly-termlist p) n) (* n (poly-sugar p))))
[52]188
189(defun poly-append (&rest plist)
190 (make-poly-from-termlist (apply #'append (mapcar #'poly-termlist plist))
[53]191 (apply #'max (mapcar #'poly-sugar plist))))
[52]192
193(defun poly-nreverse (p)
[1268]194 "Destructively reverse the order of terms in polynomial P. Returns P"
[986]195 (declare (type poly p))
[52]196 (setf (poly-termlist p) (nreverse (poly-termlist p)))
197 p)
198
[1265]199(defun poly-reverse (p)
[1268]200 "Returns a copy of the polynomial P with terms in reverse order."
[1265]201 (declare (type poly p))
202 (make-poly-from-termlist (reverse (poly-termlist p))
203 (poly-sugar p)))
204
205
[52]206(defun poly-contract (p &optional (k 1))
[986]207 (declare (type poly p))
[52]208 (make-poly-from-termlist (termlist-contract (poly-termlist p) k)
[53]209 (poly-sugar p)))
[52]210
[973]211(defun poly-extend (p &optional (m (make-monom :dimension 1)))
[987]212 (declare (type poly p))
[52]213 (make-poly-from-termlist
214 (termlist-extend (poly-termlist p) m)
215 (+ (poly-sugar p) (monom-sugar m))))
216
217(defun poly-add-variables (p k)
[988]218 (declare (type poly p))
[52]219 (setf (poly-termlist p) (termlist-add-variables (poly-termlist p) k))
220 p)
221
222(defun poly-list-add-variables (plist k)
223 (mapcar #'(lambda (p) (poly-add-variables p k)) plist))
224
225(defun poly-standard-extension (plist &aux (k (length plist)))
226 "Calculate [U1*P1,U2*P2,...,UK*PK], where PLIST=[P1,P2,...,PK]."
227 (declare (list plist) (fixnum k))
228 (labels ((incf-power (g i)
229 (dolist (x (poly-termlist g))
230 (incf (monom-elt (term-monom x) i)))
231 (incf (poly-sugar g))))
232 (setf plist (poly-list-add-variables plist k))
233 (dotimes (i k plist)
234 (incf-power (nth i plist) i))))
235
[1473]236(defun saturation-extension (ring f plist
237 &aux
238 (k (length plist))
[1474]239 (d (monom-dimension (poly-lm (car plist))))
240 f-x plist-x)
[52]241 "Calculate [F, U1*P1-1,U2*P2-1,...,UK*PK-1], where PLIST=[P1,P2,...,PK]."
[1474]242 (setf f-x (poly-list-add-variables f k)
243 plist-x (mapcar #'(lambda (x)
244 (setf (poly-termlist x) (nconc (poly-termlist x)
245 (list (make-term (make-monom :dimension d)
246 (funcall (ring-uminus ring) (funcall (ring-unit ring)))))))
247 x)
248 (poly-standard-extension plist)))
249 (append f-x plist-x))
[52]250
251
[1475]252(defun polysaturation-extension (ring f plist
253 &aux
254 (k (length plist))
[1476]255 (d (+ k (monom-dimension (poly-lm (car plist)))))
[1494]256 ;; Add k variables to f
[1493]257 (f (poly-list-add-variables f k))
[1495]258 ;; Set PLIST to [U1*P1,U2*P2,...,UK*PK]
[1493]259 (plist (apply #'poly-append (poly-standard-extension plist))))
[1497]260 "Calculate [F, U1*P1+U2*P2+...+UK*PK-1], where PLIST=[P1,P2,...,PK]. It destructively modifies F."
[1493]261 ;; Add -1 as the last term
262 (setf (cdr (last (poly-termlist plist)))
263 (list (make-term (make-monom :dimension d)
264 (funcall (ring-uminus ring) (funcall (ring-unit ring))))))
265 (append f (list plist)))
[52]266
[1477]267(defun saturation-extension-1 (ring f p)
[1497]268 "Calculate [F, U*P-1]. It destructively modifies F."
[1477]269 (polysaturation-extension ring f (list p)))
[53]270
271;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
272;;
273;; Evaluation of polynomial (prefix) expressions
274;;
275;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
276
277(defun coerce-coeff (ring expr vars)
278 "Coerce an element of the coefficient ring to a constant polynomial."
279 ;; Modular arithmetic handler by rat
[975]280 (make-poly-from-termlist (list (make-term (make-monom :dimension (length vars))
[53]281 (funcall (ring-parse ring) expr)))
282 0))
283
[1046]284(defun poly-eval (expr vars
285 &optional
286 (ring *ring-of-integers*)
[1048]287 (order #'lex>)
[1170]288 (list-marker :[)
[1047]289 &aux
290 (ring-and-order (make-ring-and-order :ring ring :order order)))
[1168]291 "Evaluate Lisp form EXPR to a polynomial or a list of polynomials in
[1208]292variables VARS. Return the resulting polynomial or list of
293polynomials. Standard arithmetical operators in form EXPR are
294replaced with their analogues in the ring of polynomials, and the
295resulting expression is evaluated, resulting in a polynomial or a list
[1209]296of polynomials in internal form. A similar operation in another computer
297algebra system could be called 'expand' or so."
[1050]298 (labels ((p-eval (arg) (poly-eval arg vars ring order))
[1140]299 (p-eval-scalar (arg) (poly-eval-scalar arg))
[53]300 (p-eval-list (args) (mapcar #'p-eval args))
[989]301 (p-add (x y) (poly-add ring-and-order x y)))
[53]302 (cond
[1128]303 ((null expr) (error "Empty expression"))
[53]304 ((eql expr 0) (make-poly-zero))
305 ((member expr vars :test #'equalp)
306 (let ((pos (position expr vars :test #'equalp)))
[1657]307 (make-poly-variable ring (length vars) pos)))
[53]308 ((atom expr)
309 (coerce-coeff ring expr vars))
310 ((eq (car expr) list-marker)
311 (cons list-marker (p-eval-list (cdr expr))))
312 (t
313 (case (car expr)
314 (+ (reduce #'p-add (p-eval-list (cdr expr))))
315 (- (case (length expr)
316 (1 (make-poly-zero))
317 (2 (poly-uminus ring (p-eval (cadr expr))))
[989]318 (3 (poly-sub ring-and-order (p-eval (cadr expr)) (p-eval (caddr expr))))
319 (otherwise (poly-sub ring-and-order (p-eval (cadr expr))
[53]320 (reduce #'p-add (p-eval-list (cddr expr)))))))
321 (*
322 (if (endp (cddr expr)) ;unary
323 (p-eval (cdr expr))
[989]324 (reduce #'(lambda (p q) (poly-mul ring-and-order p q)) (p-eval-list (cdr expr)))))
[1106]325 (/
326 ;; A polynomial can be divided by a scalar
[1115]327 (cond
328 ((endp (cddr expr))
[1117]329 ;; A special case (/ ?), the inverse
[1119]330 (coerce-coeff ring (apply (ring-div ring) (cdr expr)) vars))
[1128]331 (t
[1115]332 (let ((num (p-eval (cadr expr)))
[1142]333 (denom-inverse (apply (ring-div ring)
334 (cons (funcall (ring-unit ring))
335 (mapcar #'p-eval-scalar (cddr expr))))))
[1118]336 (scalar-times-poly ring denom-inverse num)))))
[53]337 (expt
338 (cond
339 ((member (cadr expr) vars :test #'equalp)
340 ;;Special handling of (expt var pow)
341 (let ((pos (position (cadr expr) vars :test #'equalp)))
[1657]342 (make-poly-variable ring (length vars) pos (caddr expr))))
[53]343 ((not (and (integerp (caddr expr)) (plusp (caddr expr))))
344 ;; Negative power means division in coefficient ring
345 ;; Non-integer power means non-polynomial coefficient
346 (coerce-coeff ring expr vars))
[989]347 (t (poly-expt ring-and-order (p-eval (cadr expr)) (caddr expr)))))
[53]348 (otherwise
349 (coerce-coeff ring expr vars)))))))
350
[1133]351(defun poly-eval-scalar (expr
352 &optional
353 (ring *ring-of-integers*)
354 &aux
355 (order #'lex>))
356 "Evaluate a scalar expression EXPR in ring RING."
357 (poly-lc (poly-eval expr nil ring order)))
358
[1189]359(defun spoly (ring-and-order f g
360 &aux
361 (ring (ro-ring ring-and-order)))
[55]362 "It yields the S-polynomial of polynomials F and G."
363 (declare (type poly f g))
364 (let* ((lcm (monom-lcm (poly-lm f) (poly-lm g)))
365 (mf (monom-div lcm (poly-lm f)))
366 (mg (monom-div lcm (poly-lm g))))
367 (declare (type monom mf mg))
368 (multiple-value-bind (c cf cg)
369 (funcall (ring-ezgcd ring) (poly-lc f) (poly-lc g))
370 (declare (ignore c))
371 (poly-sub
[1189]372 ring-and-order
[55]373 (scalar-times-poly ring cg (monom-times-poly mf f))
374 (scalar-times-poly ring cf (monom-times-poly mg g))))))
[53]375
376
[55]377(defun poly-primitive-part (ring p)
378 "Divide polynomial P with integer coefficients by gcd of its
379coefficients and return the result."
380 (declare (type poly p))
381 (if (poly-zerop p)
382 (values p 1)
383 (let ((c (poly-content ring p)))
[1203]384 (values (make-poly-from-termlist
385 (mapcar
386 #'(lambda (x)
387 (make-term (term-monom x)
388 (funcall (ring-div ring) (term-coeff x) c)))
389 (poly-termlist p))
390 (poly-sugar p))
391 c))))
[55]392
393(defun poly-content (ring p)
394 "Greatest common divisor of the coefficients of the polynomial P. Use the RING structure
395to compute the greatest common divisor."
396 (declare (type poly p))
397 (reduce (ring-gcd ring) (mapcar #'term-coeff (rest (poly-termlist p))) :initial-value (poly-lc p)))
[1066]398
[1091]399(defun read-infix-form (&key (stream t))
[1066]400 "Parser of infix expressions with integer/rational coefficients
401The parser will recognize two kinds of polynomial expressions:
402
403- polynomials in fully expanded forms with coefficients
404 written in front of symbolic expressions; constants can be optionally
405 enclosed in (); for example, the infix form
406 X^2-Y^2+(-4/3)*U^2*W^3-5
407 parses to
408 (+ (- (EXPT X 2) (EXPT Y 2)) (* (- (/ 4 3)) (EXPT U 2) (EXPT W 3)) (- 5))
409
410- lists of polynomials; for example
411 [X-Y, X^2+3*Z]
412 parses to
413 (:[ (- X Y) (+ (EXPT X 2) (* 3 Z)))
414 where the first symbol [ marks a list of polynomials.
415
416-other infix expressions, for example
417 [(X-Y)*(X+Y)/Z,(X+1)^2]
418parses to:
419 (:[ (/ (* (- X Y) (+ X Y)) Z) (EXPT (+ X 1) 2))
420Currently this function is implemented using M. Kantrowitz's INFIX package."
421 (read-from-string
422 (concatenate 'string
423 "#I("
424 (with-output-to-string (s)
425 (loop
426 (multiple-value-bind (line eof)
427 (read-line stream t)
428 (format s "~A" line)
429 (when eof (return)))))
430 ")")))
431
[1145]432(defun read-poly (vars &key
433 (stream t)
434 (ring *ring-of-integers*)
435 (order #'lex>))
[1067]436 "Reads an expression in prefix form from a stream STREAM.
[1144]437The expression read from the strem should represent a polynomial or a
438list of polynomials in variables VARS, over the ring RING. The
439polynomial or list of polynomials is returned, with terms in each
440polynomial ordered according to monomial order ORDER."
[1146]441 (poly-eval (read-infix-form :stream stream) vars ring order))
[1092]442
[1146]443(defun string->poly (str vars
[1164]444 &optional
[1146]445 (ring *ring-of-integers*)
446 (order #'lex>))
447 "Converts a string STR to a polynomial in variables VARS."
[1097]448 (with-input-from-string (s str)
[1165]449 (read-poly vars :stream s :ring ring :order order)))
[1095]450
[1143]451(defun poly->alist (p)
452 "Convert a polynomial P to an association list. Thus, the format of the
453returned value is ((MONOM[0] . COEFF[0]) (MONOM[1] . COEFF[1]) ...), where
454MONOM[I] is a list of exponents in the monomial and COEFF[I] is the
455corresponding coefficient in the ring."
[1171]456 (cond
457 ((poly-p p)
458 (mapcar #'term->cons (poly-termlist p)))
459 ((and (consp p) (eq (car p) :[))
[1172]460 (cons :[ (mapcar #'poly->alist (cdr p))))))
[1143]461
[1164]462(defun string->alist (str vars
463 &optional
464 (ring *ring-of-integers*)
465 (order #'lex>))
[1143]466 "Convert a string STR representing a polynomial or polynomial list to
[1158]467an association list (... (MONOM . COEFF) ...)."
[1166]468 (poly->alist (string->poly str vars ring order)))
[1440]469
470(defun poly-equal-no-sugar-p (p q)
471 "Compare polynomials for equality, ignoring sugar."
472 (equalp (poly-termlist p) (poly-termlist q)))
[1559]473
474(defun poly-set-equal-no-sugar-p (p q)
475 "Compare polynomial sets P and Q for equality, ignoring sugar."
476 (null (set-exclusive-or p q :test #'poly-equal-no-sugar-p )))
[1560]477
478(defun poly-list-equal-no-sugar-p (p q)
479 "Compare polynomial lists P and Q for equality, ignoring sugar."
480 (every #'poly-equal-no-sugar-p p q))
Note: See TracBrowser for help on using the repository browser.