close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/polynomial.lisp@ 1267

Last change on this file since 1267 was 1267, checked in by Marek Rychlik, 10 years ago

* empty log message *

File size: 15.7 KB
RevLine 
[1201]1;;; -*- Mode: Lisp -*-
[77]2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
22
[431]23(defpackage "POLYNOMIAL"
[1072]24 (:use :cl :ring :ring-and-order :monomial :order :term :termlist :infix)
[432]25 (:export "POLY"
26 "POLY-TERMLIST"
27 "POLY-SUGAR"
[1218]28 "POLY-RESET-SUGAR"
[432]29 "POLY-LT"
[433]30 "MAKE-POLY-FROM-TERMLIST"
31 "MAKE-POLY-ZERO"
32 "MAKE-VARIABLE"
33 "POLY-UNIT"
34 "POLY-LM"
35 "POLY-SECOND-LM"
36 "POLY-SECOND-LT"
37 "POLY-LC"
38 "POLY-SECOND-LC"
39 "POLY-ZEROP"
[458]40 "POLY-LENGTH"
[433]41 "SCALAR-TIMES-POLY"
42 "SCALAR-TIMES-POLY-1"
43 "MONOM-TIMES-POLY"
44 "TERM-TIMES-POLY"
45 "POLY-ADD"
46 "POLY-SUB"
47 "POLY-UMINUS"
48 "POLY-MUL"
49 "POLY-EXPT"
50 "POLY-APPEND"
51 "POLY-NREVERSE"
[1266]52 "POLY-REVERSE"
[433]53 "POLY-CONTRACT"
54 "POLY-EXTEND"
55 "POLY-ADD-VARIABLES"
56 "POLY-LIST-ADD-VARIABLES"
57 "POLY-STANDARD-EXTENSION"
58 "SATURATION-EXTENSION"
59 "POLYSATURATION-EXTENSION"
60 "SATURATION-EXTENSION-1"
61 "COERCE-COEFF"
62 "POLY-EVAL"
[1134]63 "POLY-EVAL-SCALAR"
[433]64 "SPOLY"
65 "POLY-PRIMITIVE-PART"
66 "POLY-CONTENT"
[1085]67 "READ-INFIX-FORM"
[1093]68 "READ-POLY"
[1104]69 "STRING->POLY"
[1159]70 "POLY->ALIST"
71 "STRING->ALIST"
[432]72 ))
[143]73
[431]74(in-package :polynomial)
75
[52]76;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
77;;
78;; Polynomials
79;;
80;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
81
82(defstruct (poly
83 ;;
84 ;; BOA constructor, by default constructs zero polynomial
85 (:constructor make-poly-from-termlist (termlist &optional (sugar (termlist-sugar termlist))))
86 (:constructor make-poly-zero (&aux (termlist nil) (sugar -1)))
87 ;; Constructor of polynomials representing a variable
88 (:constructor make-variable (ring nvars pos &optional (power 1)
[53]89 &aux
90 (termlist (list
91 (make-term-variable ring nvars pos power)))
92 (sugar power)))
93 (:constructor poly-unit (ring dimension
94 &aux
95 (termlist (termlist-unit ring dimension))
96 (sugar 0))))
[52]97 (termlist nil :type list)
98 (sugar -1 :type fixnum))
99
100;; Leading term
101(defmacro poly-lt (p) `(car (poly-termlist ,p)))
102
103;; Second term
104(defmacro poly-second-lt (p) `(cadar (poly-termlist ,p)))
105
106;; Leading monomial
107(defun poly-lm (p) (term-monom (poly-lt p)))
108
109;; Second monomial
110(defun poly-second-lm (p) (term-monom (poly-second-lt p)))
111
112;; Leading coefficient
113(defun poly-lc (p) (term-coeff (poly-lt p)))
114
115;; Second coefficient
116(defun poly-second-lc (p) (term-coeff (poly-second-lt p)))
117
118;; Testing for a zero polynomial
119(defun poly-zerop (p) (null (poly-termlist p)))
120
121;; The number of terms
122(defun poly-length (p) (length (poly-termlist p)))
123
[1215]124(defun poly-reset-sugar (p)
[1217]125 "(Re)sets the sugar of a polynomial P to the sugar of (POLY-TERMLIST P).
126Thus, the sugar is set to the maximum sugar of all monomials of P, or -1
127if P is a zero polynomial."
[1215]128 (declare (type poly p))
[1216]129 (setf (poly-sugar p) (termlist-sugar (poly-termlist p)))
130 p)
[1215]131
[52]132(defun scalar-times-poly (ring c p)
[1214]133 "The scalar product of scalar C by a polynomial P. The sugar of the
134original polynomial becomes the sugar of the result."
[1215]135 (declare (type ring ring) (type poly p))
[52]136 (make-poly-from-termlist (scalar-times-termlist ring c (poly-termlist p)) (poly-sugar p)))
137
138(defun scalar-times-poly-1 (ring c p)
[1213]139 "The scalar product of scalar C by a polynomial P, omitting the head term. The sugar of the
140original polynomial becomes the sugar of the result."
[1215]141 (declare (type ring ring) (type poly p))
[52]142 (make-poly-from-termlist (scalar-times-termlist ring c (cdr (poly-termlist p))) (poly-sugar p)))
[53]143
[52]144(defun monom-times-poly (m p)
[1215]145 (declare (type poly p))
[980]146 (make-poly-from-termlist
147 (monom-times-termlist m (poly-termlist p))
148 (+ (poly-sugar p) (monom-sugar m))))
[52]149
150(defun term-times-poly (ring term p)
[982]151 (declare (type ring ring) (type term term) (type poly p))
[979]152 (make-poly-from-termlist
153 (term-times-termlist ring term (poly-termlist p))
154 (+ (poly-sugar p) (term-sugar term))))
[52]155
[978]156(defun poly-add (ring-and-order p q)
[980]157 (declare (type ring-and-order ring-and-order) (type poly p q))
[978]158 (make-poly-from-termlist
159 (termlist-add ring-and-order
160 (poly-termlist p)
161 (poly-termlist q))
162 (max (poly-sugar p) (poly-sugar q))))
[52]163
[980]164(defun poly-sub (ring-and-order p q)
165 (declare (type ring-and-order ring-and-order) (type poly p q))
166 (make-poly-from-termlist
[990]167 (termlist-sub ring-and-order (poly-termlist p) (poly-termlist q))
[980]168 (max (poly-sugar p) (poly-sugar q))))
[52]169
170(defun poly-uminus (ring p)
[983]171 (declare (type ring ring) (type poly p))
172 (make-poly-from-termlist
173 (termlist-uminus ring (poly-termlist p))
174 (poly-sugar p)))
[52]175
[984]176(defun poly-mul (ring-and-order p q)
177 (declare (type ring-and-order ring-and-order) (type poly p q))
178 (make-poly-from-termlist
[991]179 (termlist-mul ring-and-order (poly-termlist p) (poly-termlist q))
[984]180 (+ (poly-sugar p) (poly-sugar q))))
[52]181
[985]182(defun poly-expt (ring-and-order p n)
183 (declare (type ring-and-order ring-and-order) (type poly p))
[992]184 (make-poly-from-termlist (termlist-expt ring-and-order (poly-termlist p) n) (* n (poly-sugar p))))
[52]185
186(defun poly-append (&rest plist)
187 (make-poly-from-termlist (apply #'append (mapcar #'poly-termlist plist))
[53]188 (apply #'max (mapcar #'poly-sugar plist))))
[52]189
190(defun poly-nreverse (p)
[1267]191 "Reverse the order of terms in polynomial P."
[986]192 (declare (type poly p))
[52]193 (setf (poly-termlist p) (nreverse (poly-termlist p)))
194 p)
195
[1265]196(defun poly-reverse (p)
197 (declare (type poly p))
198 (make-poly-from-termlist (reverse (poly-termlist p))
199 (poly-sugar p)))
200
201
[52]202(defun poly-contract (p &optional (k 1))
[986]203 (declare (type poly p))
[52]204 (make-poly-from-termlist (termlist-contract (poly-termlist p) k)
[53]205 (poly-sugar p)))
[52]206
[973]207(defun poly-extend (p &optional (m (make-monom :dimension 1)))
[987]208 (declare (type poly p))
[52]209 (make-poly-from-termlist
210 (termlist-extend (poly-termlist p) m)
211 (+ (poly-sugar p) (monom-sugar m))))
212
213(defun poly-add-variables (p k)
[988]214 (declare (type poly p))
[52]215 (setf (poly-termlist p) (termlist-add-variables (poly-termlist p) k))
216 p)
217
218(defun poly-list-add-variables (plist k)
219 (mapcar #'(lambda (p) (poly-add-variables p k)) plist))
220
221(defun poly-standard-extension (plist &aux (k (length plist)))
222 "Calculate [U1*P1,U2*P2,...,UK*PK], where PLIST=[P1,P2,...,PK]."
223 (declare (list plist) (fixnum k))
224 (labels ((incf-power (g i)
225 (dolist (x (poly-termlist g))
226 (incf (monom-elt (term-monom x) i)))
227 (incf (poly-sugar g))))
228 (setf plist (poly-list-add-variables plist k))
229 (dotimes (i k plist)
230 (incf-power (nth i plist) i))))
231
232(defun saturation-extension (ring f plist &aux (k (length plist)) (d (monom-dimension (poly-lm (car plist)))))
233 "Calculate [F, U1*P1-1,U2*P2-1,...,UK*PK-1], where PLIST=[P1,P2,...,PK]."
234 (setf f (poly-list-add-variables f k)
235 plist (mapcar #'(lambda (x)
236 (setf (poly-termlist x) (nconc (poly-termlist x)
[974]237 (list (make-term (make-monom :dimension d)
[52]238 (funcall (ring-uminus ring) (funcall (ring-unit ring)))))))
239 x)
240 (poly-standard-extension plist)))
241 (append f plist))
242
243
244(defun polysaturation-extension (ring f plist &aux (k (length plist))
[820]245 (d (+ k (monom-dimension (poly-lm (car plist))))))
[52]246 "Calculate [F, U1*P1+U2*P2+...+UK*PK-1], where PLIST=[P1,P2,...,PK]."
247 (setf f (poly-list-add-variables f k)
248 plist (apply #'poly-append (poly-standard-extension plist))
[974]249 (cdr (last (poly-termlist plist))) (list (make-term (make-monom :dimension d)
[52]250 (funcall (ring-uminus ring) (funcall (ring-unit ring))))))
251 (append f (list plist)))
252
253(defun saturation-extension-1 (ring f p) (polysaturation-extension ring f (list p)))
[53]254
255;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
256;;
257;; Evaluation of polynomial (prefix) expressions
258;;
259;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
260
261(defun coerce-coeff (ring expr vars)
262 "Coerce an element of the coefficient ring to a constant polynomial."
263 ;; Modular arithmetic handler by rat
[975]264 (make-poly-from-termlist (list (make-term (make-monom :dimension (length vars))
[53]265 (funcall (ring-parse ring) expr)))
266 0))
267
[1046]268(defun poly-eval (expr vars
269 &optional
270 (ring *ring-of-integers*)
[1048]271 (order #'lex>)
[1170]272 (list-marker :[)
[1047]273 &aux
274 (ring-and-order (make-ring-and-order :ring ring :order order)))
[1168]275 "Evaluate Lisp form EXPR to a polynomial or a list of polynomials in
[1208]276variables VARS. Return the resulting polynomial or list of
277polynomials. Standard arithmetical operators in form EXPR are
278replaced with their analogues in the ring of polynomials, and the
279resulting expression is evaluated, resulting in a polynomial or a list
[1209]280of polynomials in internal form. A similar operation in another computer
281algebra system could be called 'expand' or so."
[1050]282 (labels ((p-eval (arg) (poly-eval arg vars ring order))
[1140]283 (p-eval-scalar (arg) (poly-eval-scalar arg))
[53]284 (p-eval-list (args) (mapcar #'p-eval args))
[989]285 (p-add (x y) (poly-add ring-and-order x y)))
[53]286 (cond
[1128]287 ((null expr) (error "Empty expression"))
[53]288 ((eql expr 0) (make-poly-zero))
289 ((member expr vars :test #'equalp)
290 (let ((pos (position expr vars :test #'equalp)))
291 (make-variable ring (length vars) pos)))
292 ((atom expr)
293 (coerce-coeff ring expr vars))
294 ((eq (car expr) list-marker)
295 (cons list-marker (p-eval-list (cdr expr))))
296 (t
297 (case (car expr)
298 (+ (reduce #'p-add (p-eval-list (cdr expr))))
299 (- (case (length expr)
300 (1 (make-poly-zero))
301 (2 (poly-uminus ring (p-eval (cadr expr))))
[989]302 (3 (poly-sub ring-and-order (p-eval (cadr expr)) (p-eval (caddr expr))))
303 (otherwise (poly-sub ring-and-order (p-eval (cadr expr))
[53]304 (reduce #'p-add (p-eval-list (cddr expr)))))))
305 (*
306 (if (endp (cddr expr)) ;unary
307 (p-eval (cdr expr))
[989]308 (reduce #'(lambda (p q) (poly-mul ring-and-order p q)) (p-eval-list (cdr expr)))))
[1106]309 (/
310 ;; A polynomial can be divided by a scalar
[1115]311 (cond
312 ((endp (cddr expr))
[1117]313 ;; A special case (/ ?), the inverse
[1119]314 (coerce-coeff ring (apply (ring-div ring) (cdr expr)) vars))
[1128]315 (t
[1115]316 (let ((num (p-eval (cadr expr)))
[1142]317 (denom-inverse (apply (ring-div ring)
318 (cons (funcall (ring-unit ring))
319 (mapcar #'p-eval-scalar (cddr expr))))))
[1118]320 (scalar-times-poly ring denom-inverse num)))))
[53]321 (expt
322 (cond
323 ((member (cadr expr) vars :test #'equalp)
324 ;;Special handling of (expt var pow)
325 (let ((pos (position (cadr expr) vars :test #'equalp)))
326 (make-variable ring (length vars) pos (caddr expr))))
327 ((not (and (integerp (caddr expr)) (plusp (caddr expr))))
328 ;; Negative power means division in coefficient ring
329 ;; Non-integer power means non-polynomial coefficient
330 (coerce-coeff ring expr vars))
[989]331 (t (poly-expt ring-and-order (p-eval (cadr expr)) (caddr expr)))))
[53]332 (otherwise
333 (coerce-coeff ring expr vars)))))))
334
[1133]335(defun poly-eval-scalar (expr
336 &optional
337 (ring *ring-of-integers*)
338 &aux
339 (order #'lex>))
340 "Evaluate a scalar expression EXPR in ring RING."
341 (poly-lc (poly-eval expr nil ring order)))
342
[1189]343(defun spoly (ring-and-order f g
344 &aux
345 (ring (ro-ring ring-and-order)))
[55]346 "It yields the S-polynomial of polynomials F and G."
347 (declare (type poly f g))
348 (let* ((lcm (monom-lcm (poly-lm f) (poly-lm g)))
349 (mf (monom-div lcm (poly-lm f)))
350 (mg (monom-div lcm (poly-lm g))))
351 (declare (type monom mf mg))
352 (multiple-value-bind (c cf cg)
353 (funcall (ring-ezgcd ring) (poly-lc f) (poly-lc g))
354 (declare (ignore c))
355 (poly-sub
[1189]356 ring-and-order
[55]357 (scalar-times-poly ring cg (monom-times-poly mf f))
358 (scalar-times-poly ring cf (monom-times-poly mg g))))))
[53]359
360
[55]361(defun poly-primitive-part (ring p)
362 "Divide polynomial P with integer coefficients by gcd of its
363coefficients and return the result."
364 (declare (type poly p))
365 (if (poly-zerop p)
366 (values p 1)
367 (let ((c (poly-content ring p)))
[1203]368 (values (make-poly-from-termlist
369 (mapcar
370 #'(lambda (x)
371 (make-term (term-monom x)
372 (funcall (ring-div ring) (term-coeff x) c)))
373 (poly-termlist p))
374 (poly-sugar p))
375 c))))
[55]376
377(defun poly-content (ring p)
378 "Greatest common divisor of the coefficients of the polynomial P. Use the RING structure
379to compute the greatest common divisor."
380 (declare (type poly p))
381 (reduce (ring-gcd ring) (mapcar #'term-coeff (rest (poly-termlist p))) :initial-value (poly-lc p)))
[1066]382
[1091]383(defun read-infix-form (&key (stream t))
[1066]384 "Parser of infix expressions with integer/rational coefficients
385The parser will recognize two kinds of polynomial expressions:
386
387- polynomials in fully expanded forms with coefficients
388 written in front of symbolic expressions; constants can be optionally
389 enclosed in (); for example, the infix form
390 X^2-Y^2+(-4/3)*U^2*W^3-5
391 parses to
392 (+ (- (EXPT X 2) (EXPT Y 2)) (* (- (/ 4 3)) (EXPT U 2) (EXPT W 3)) (- 5))
393
394- lists of polynomials; for example
395 [X-Y, X^2+3*Z]
396 parses to
397 (:[ (- X Y) (+ (EXPT X 2) (* 3 Z)))
398 where the first symbol [ marks a list of polynomials.
399
400-other infix expressions, for example
401 [(X-Y)*(X+Y)/Z,(X+1)^2]
402parses to:
403 (:[ (/ (* (- X Y) (+ X Y)) Z) (EXPT (+ X 1) 2))
404Currently this function is implemented using M. Kantrowitz's INFIX package."
405 (read-from-string
406 (concatenate 'string
407 "#I("
408 (with-output-to-string (s)
409 (loop
410 (multiple-value-bind (line eof)
411 (read-line stream t)
412 (format s "~A" line)
413 (when eof (return)))))
414 ")")))
415
[1145]416(defun read-poly (vars &key
417 (stream t)
418 (ring *ring-of-integers*)
419 (order #'lex>))
[1067]420 "Reads an expression in prefix form from a stream STREAM.
[1144]421The expression read from the strem should represent a polynomial or a
422list of polynomials in variables VARS, over the ring RING. The
423polynomial or list of polynomials is returned, with terms in each
424polynomial ordered according to monomial order ORDER."
[1146]425 (poly-eval (read-infix-form :stream stream) vars ring order))
[1092]426
[1146]427(defun string->poly (str vars
[1164]428 &optional
[1146]429 (ring *ring-of-integers*)
430 (order #'lex>))
431 "Converts a string STR to a polynomial in variables VARS."
[1097]432 (with-input-from-string (s str)
[1165]433 (read-poly vars :stream s :ring ring :order order)))
[1095]434
[1143]435(defun poly->alist (p)
436 "Convert a polynomial P to an association list. Thus, the format of the
437returned value is ((MONOM[0] . COEFF[0]) (MONOM[1] . COEFF[1]) ...), where
438MONOM[I] is a list of exponents in the monomial and COEFF[I] is the
439corresponding coefficient in the ring."
[1171]440 (cond
441 ((poly-p p)
442 (mapcar #'term->cons (poly-termlist p)))
443 ((and (consp p) (eq (car p) :[))
[1172]444 (cons :[ (mapcar #'poly->alist (cdr p))))))
[1143]445
[1164]446(defun string->alist (str vars
447 &optional
448 (ring *ring-of-integers*)
449 (order #'lex>))
[1143]450 "Convert a string STR representing a polynomial or polynomial list to
[1158]451an association list (... (MONOM . COEFF) ...)."
[1166]452 (poly->alist (string->poly str vars ring order)))
Note: See TracBrowser for help on using the repository browser.