;;; -*- Mode: Lisp -*- ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;; ;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik ;;; ;;; This program is free software; you can redistribute it and/or modify ;;; it under the terms of the GNU General Public License as published by ;;; the Free Software Foundation; either version 2 of the License, or ;;; (at your option) any later version. ;;; ;;; This program is distributed in the hope that it will be useful, ;;; but WITHOUT ANY WARRANTY; without even the implied warranty of ;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ;;; GNU General Public License for more details. ;;; ;;; You should have received a copy of the GNU General Public License ;;; along with this program; if not, write to the Free Software ;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. ;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; ;; Polynomials ;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (defpackage "POL" (:use :cl :ring :ring-and-order :monom :order :term :termlist :infix) (:export "POLY" "POLY-TERMLIST" "POLY-SUGAR" "POLY-RESET-SUGAR" "POLY-LT" "MAKE-POLY-FROM-TERMLIST" "MAKE-POLY-ZERO" "MAKE-POLY-VARIABLE" "POLY-UNIT" "POLY-LM" "POLY-SECOND-LM" "POLY-SECOND-LT" "POLY-LC" "POLY-SECOND-LC" "POLY-ZEROP" "POLY-LENGTH" "SCALAR-TIMES-POLY" "SCALAR-TIMES-POLY-1" "MONOM-TIMES-POLY" "TERM-TIMES-POLY" "POLY-ADD" "POLY-SUB" "POLY-UMINUS" "POLY-MUL" "POLY-EXPT" "POLY-APPEND" "POLY-NREVERSE" "POLY-REVERSE" "POLY-CONTRACT" "POLY-EXTEND" "POLY-ADD-VARIABLES" "POLY-LIST-ADD-VARIABLES" "POLY-STANDARD-EXTENSION" "SATURATION-EXTENSION" "POLYSATURATION-EXTENSION" "SATURATION-EXTENSION-1" "COERCE-COEFF" "POLY-EVAL" "POLY-EVAL-SCALAR" "SPOLY" "POLY-PRIMITIVE-PART" "POLY-CONTENT" "READ-INFIX-FORM" "READ-POLY" "STRING->POLY" "POLY->ALIST" "STRING->ALIST" "POLY-EQUAL-NO-SUGAR-P" "POLY-SET-EQUAL-NO-SUGAR-P" "POLY-LIST-EQUAL-NO-SUGAR-P" )) (in-package :pol) (proclaim '(optimize (speed 0) (space 0) (safety 3) (debug 3))) (defclass poly (ring-and-order) ((termlist) (sugar) ) (defun make-poly-from-termlist (termlist &optional (sugar (termlist-sugar termlist)))) (defun make-poly-zero (&aux (termlist nil) (sugar -1))) (defun make-poly-variable (ring nvars pos &optional (power 1) &aux (termlist (list (make-term-variable ring nvars pos power))) (sugar power))) (defun poly-unit (ring dimension &aux (termlist (termlist-unit ring dimension)) (sugar 0))) ;; Leading term (defmacro poly-lt (p) `(car (poly-termlist ,p))) ;; Second term (defmacro poly-second-lt (p) `(cadar (poly-termlist ,p))) ;; Leading monomial (defun poly-lm (p) (declare (type poly p)) (term-monom (poly-lt p))) ;; Second monomial (defun poly-second-lm (p) (declare (type poly p)) (term-monom (poly-second-lt p))) ;; Leading coefficient (defun poly-lc (p) (declare (type poly p)) (term-coeff (poly-lt p))) ;; Second coefficient (defun poly-second-lc (p) (declare (type poly p)) (term-coeff (poly-second-lt p))) ;; Testing for a zero polynomial (defun poly-zerop (p) (declare (type poly p)) (null (poly-termlist p))) ;; The number of terms (defun poly-length (p) (declare (type poly p)) (length (poly-termlist p))) (defun poly-reset-sugar (p) "(Re)sets the sugar of a polynomial P to the sugar of (POLY-TERMLIST P). Thus, the sugar is set to the maximum sugar of all monomials of P, or -1 if P is a zero polynomial." (declare (type poly p)) (setf (poly-sugar p) (termlist-sugar (poly-termlist p))) p) (defun scalar-times-poly (ring c p) "The scalar product of scalar C by a polynomial P. The sugar of the original polynomial becomes the sugar of the result." (declare (type ring ring) (type poly p)) (make-poly-from-termlist (scalar-times-termlist ring c (poly-termlist p)) (poly-sugar p))) (defun scalar-times-poly-1 (ring c p) "The scalar product of scalar C by a polynomial P, omitting the head term. The sugar of the original polynomial becomes the sugar of the result." (declare (type ring ring) (type poly p)) (make-poly-from-termlist (scalar-times-termlist ring c (cdr (poly-termlist p))) (poly-sugar p))) (defun monom-times-poly (m p) (declare (type monom m) (type poly p)) (make-poly-from-termlist (monom-times-termlist m (poly-termlist p)) (+ (poly-sugar p) (monom-sugar m)))) (defun term-times-poly (ring term p) (declare (type ring ring) (type term term) (type poly p)) (make-poly-from-termlist (term-times-termlist ring term (poly-termlist p)) (+ (poly-sugar p) (term-sugar term)))) (defun poly-add (ring-and-order p q) (declare (type ring-and-order ring-and-order) (type poly p q)) (make-poly-from-termlist (termlist-add ring-and-order (poly-termlist p) (poly-termlist q)) (max (poly-sugar p) (poly-sugar q)))) (defun poly-sub (ring-and-order p q) (declare (type ring-and-order ring-and-order) (type poly p q)) (make-poly-from-termlist (termlist-sub ring-and-order (poly-termlist p) (poly-termlist q)) (max (poly-sugar p) (poly-sugar q)))) (defun poly-uminus (ring p) (declare (type ring ring) (type poly p)) (make-poly-from-termlist (termlist-uminus ring (poly-termlist p)) (poly-sugar p))) (defun poly-mul (ring-and-order p q) (declare (type ring-and-order ring-and-order) (type poly p q)) (make-poly-from-termlist (termlist-mul ring-and-order (poly-termlist p) (poly-termlist q)) (+ (poly-sugar p) (poly-sugar q)))) (defun poly-expt (ring-and-order p n) (declare (type ring-and-order ring-and-order) (type poly p)) (make-poly-from-termlist (termlist-expt ring-and-order (poly-termlist p) n) (* n (poly-sugar p)))) (defun poly-append (&rest plist) (make-poly-from-termlist (apply #'append (mapcar #'poly-termlist plist)) (apply #'max (mapcar #'poly-sugar plist)))) (defun poly-nreverse (p) "Destructively reverse the order of terms in polynomial P. Returns P" (declare (type poly p)) (setf (poly-termlist p) (nreverse (poly-termlist p))) p) (defun poly-reverse (p) "Returns a copy of the polynomial P with terms in reverse order." (declare (type poly p)) (make-poly-from-termlist (reverse (poly-termlist p)) (poly-sugar p))) (defun poly-contract (p &optional (k 1)) (declare (type poly p)) (make-poly-from-termlist (termlist-contract (poly-termlist p) k) (poly-sugar p))) (defun poly-extend (p &optional (m (make-monom :dimension 1))) (declare (type poly p)) (make-poly-from-termlist (termlist-extend (poly-termlist p) m) (+ (poly-sugar p) (monom-sugar m)))) (defun poly-add-variables (p k) (declare (type poly p)) (setf (poly-termlist p) (termlist-add-variables (poly-termlist p) k)) p) (defun poly-list-add-variables (plist k) (mapcar #'(lambda (p) (poly-add-variables p k)) plist)) (defun poly-standard-extension (plist &aux (k (length plist))) "Calculate [U1*P1,U2*P2,...,UK*PK], where PLIST=[P1,P2,...,PK]." (declare (list plist) (fixnum k)) (labels ((incf-power (g i) (dolist (x (poly-termlist g)) (incf (monom-elt (term-monom x) i))) (incf (poly-sugar g)))) (setf plist (poly-list-add-variables plist k)) (dotimes (i k plist) (incf-power (nth i plist) i)))) (defun saturation-extension (ring f plist &aux (k (length plist)) (d (monom-dimension (poly-lm (car plist)))) f-x plist-x) "Calculate [F, U1*P1-1,U2*P2-1,...,UK*PK-1], where PLIST=[P1,P2,...,PK]." (declare (type ring ring)) (setf f-x (poly-list-add-variables f k) plist-x (mapcar #'(lambda (x) (setf (poly-termlist x) (nconc (poly-termlist x) (list (make-term :monom (make-monom :dimension d) :coeff (funcall (ring-uminus ring) (funcall (ring-unit ring))))))) x) (poly-standard-extension plist))) (append f-x plist-x)) (defun polysaturation-extension (ring f plist &aux (k (length plist)) (d (+ k (monom-dimension (poly-lm (car plist))))) ;; Add k variables to f (f (poly-list-add-variables f k)) ;; Set PLIST to [U1*P1,U2*P2,...,UK*PK] (plist (apply #'poly-append (poly-standard-extension plist)))) "Calculate [F, U1*P1+U2*P2+...+UK*PK-1], where PLIST=[P1,P2,...,PK]. It destructively modifies F." ;; Add -1 as the last term (declare (type ring ring)) (setf (cdr (last (poly-termlist plist))) (list (make-term :monom (make-monom :dimension d) :coeff (funcall (ring-uminus ring) (funcall (ring-unit ring)))))) (append f (list plist))) (defun saturation-extension-1 (ring f p) "Calculate [F, U*P-1]. It destructively modifies F." (declare (type ring ring)) (polysaturation-extension ring f (list p))) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; ;; Evaluation of polynomial (prefix) expressions ;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (defun coerce-coeff (ring expr vars) "Coerce an element of the coefficient ring to a constant polynomial." ;; Modular arithmetic handler by rat (declare (type ring ring)) (make-poly-from-termlist (list (make-term :monom (make-monom :dimension (length vars)) :coeff (funcall (ring-parse ring) expr))) 0)) (defun poly-eval (expr vars &optional (ring +ring-of-integers+) (order #'lex>) (list-marker :[) &aux (ring-and-order (make-ring-and-order :ring ring :order order))) "Evaluate Lisp form EXPR to a polynomial or a list of polynomials in variables VARS. Return the resulting polynomial or list of polynomials. Standard arithmetical operators in form EXPR are replaced with their analogues in the ring of polynomials, and the resulting expression is evaluated, resulting in a polynomial or a list of polynomials in internal form. A similar operation in another computer algebra system could be called 'expand' or so." (declare (type ring ring)) (labels ((p-eval (arg) (poly-eval arg vars ring order)) (p-eval-scalar (arg) (poly-eval-scalar arg)) (p-eval-list (args) (mapcar #'p-eval args)) (p-add (x y) (poly-add ring-and-order x y))) (cond ((null expr) (error "Empty expression")) ((eql expr 0) (make-poly-zero)) ((member expr vars :test #'equalp) (let ((pos (position expr vars :test #'equalp))) (make-poly-variable ring (length vars) pos))) ((atom expr) (coerce-coeff ring expr vars)) ((eq (car expr) list-marker) (cons list-marker (p-eval-list (cdr expr)))) (t (case (car expr) (+ (reduce #'p-add (p-eval-list (cdr expr)))) (- (case (length expr) (1 (make-poly-zero)) (2 (poly-uminus ring (p-eval (cadr expr)))) (3 (poly-sub ring-and-order (p-eval (cadr expr)) (p-eval (caddr expr)))) (otherwise (poly-sub ring-and-order (p-eval (cadr expr)) (reduce #'p-add (p-eval-list (cddr expr))))))) (* (if (endp (cddr expr)) ;unary (p-eval (cdr expr)) (reduce #'(lambda (p q) (poly-mul ring-and-order p q)) (p-eval-list (cdr expr))))) (/ ;; A polynomial can be divided by a scalar (cond ((endp (cddr expr)) ;; A special case (/ ?), the inverse (coerce-coeff ring (apply (ring-div ring) (cdr expr)) vars)) (t (let ((num (p-eval (cadr expr))) (denom-inverse (apply (ring-div ring) (cons (funcall (ring-unit ring)) (mapcar #'p-eval-scalar (cddr expr)))))) (scalar-times-poly ring denom-inverse num))))) (expt (cond ((member (cadr expr) vars :test #'equalp) ;;Special handling of (expt var pow) (let ((pos (position (cadr expr) vars :test #'equalp))) (make-poly-variable ring (length vars) pos (caddr expr)))) ((not (and (integerp (caddr expr)) (plusp (caddr expr)))) ;; Negative power means division in coefficient ring ;; Non-integer power means non-polynomial coefficient (coerce-coeff ring expr vars)) (t (poly-expt ring-and-order (p-eval (cadr expr)) (caddr expr))))) (otherwise (coerce-coeff ring expr vars))))))) (defun poly-eval-scalar (expr &optional (ring +ring-of-integers+) &aux (order #'lex>)) "Evaluate a scalar expression EXPR in ring RING." (declare (type ring ring)) (poly-lc (poly-eval expr nil ring order))) (defun spoly (ring-and-order f g &aux (ring (ro-ring ring-and-order))) "It yields the S-polynomial of polynomials F and G." (declare (type ring-and-order ring-and-order) (type poly f g)) (let* ((lcm (monom-lcm (poly-lm f) (poly-lm g))) (mf (monom-div lcm (poly-lm f))) (mg (monom-div lcm (poly-lm g)))) (declare (type monom mf mg)) (multiple-value-bind (c cf cg) (funcall (ring-ezgcd ring) (poly-lc f) (poly-lc g)) (declare (ignore c)) (poly-sub ring-and-order (scalar-times-poly ring cg (monom-times-poly mf f)) (scalar-times-poly ring cf (monom-times-poly mg g)))))) (defun poly-primitive-part (ring p) "Divide polynomial P with integer coefficients by gcd of its coefficients and return the result." (declare (type ring ring) (type poly p)) (if (poly-zerop p) (values p 1) (let ((c (poly-content ring p))) (values (make-poly-from-termlist (mapcar #'(lambda (x) (make-term :monom (term-monom x) :coeff (funcall (ring-div ring) (term-coeff x) c))) (poly-termlist p)) (poly-sugar p)) c)))) (defun poly-content (ring p) "Greatest common divisor of the coefficients of the polynomial P. Use the RING structure to compute the greatest common divisor." (declare (type ring ring) (type poly p)) (reduce (ring-gcd ring) (mapcar #'term-coeff (rest (poly-termlist p))) :initial-value (poly-lc p))) (defun read-infix-form (&key (stream t)) "Parser of infix expressions with integer/rational coefficients The parser will recognize two kinds of polynomial expressions: - polynomials in fully expanded forms with coefficients written in front of symbolic expressions; constants can be optionally enclosed in (); for example, the infix form X^2-Y^2+(-4/3)*U^2*W^3-5 parses to (+ (- (EXPT X 2) (EXPT Y 2)) (* (- (/ 4 3)) (EXPT U 2) (EXPT W 3)) (- 5)) - lists of polynomials; for example [X-Y, X^2+3*Z] parses to (:[ (- X Y) (+ (EXPT X 2) (* 3 Z))) where the first symbol [ marks a list of polynomials. -other infix expressions, for example [(X-Y)*(X+Y)/Z,(X+1)^2] parses to: (:[ (/ (* (- X Y) (+ X Y)) Z) (EXPT (+ X 1) 2)) Currently this function is implemented using M. Kantrowitz's INFIX package." (read-from-string (concatenate 'string "#I(" (with-output-to-string (s) (loop (multiple-value-bind (line eof) (read-line stream t) (format s "~A" line) (when eof (return))))) ")"))) (defun read-poly (vars &key (stream t) (ring +ring-of-integers+) (order #'lex>)) "Reads an expression in prefix form from a stream STREAM. The expression read from the strem should represent a polynomial or a list of polynomials in variables VARS, over the ring RING. The polynomial or list of polynomials is returned, with terms in each polynomial ordered according to monomial order ORDER." (poly-eval (read-infix-form :stream stream) vars ring order)) (defun string->poly (str vars &optional (ring +ring-of-integers+) (order #'lex>)) "Converts a string STR to a polynomial in variables VARS." (with-input-from-string (s str) (read-poly vars :stream s :ring ring :order order))) (defun poly->alist (p) "Convert a polynomial P to an association list. Thus, the format of the returned value is ((MONOM[0] . COEFF[0]) (MONOM[1] . COEFF[1]) ...), where MONOM[I] is a list of exponents in the monomial and COEFF[I] is the corresponding coefficient in the ring." (cond ((poly-p p) (mapcar #'term->cons (poly-termlist p))) ((and (consp p) (eq (car p) :[)) (cons :[ (mapcar #'poly->alist (cdr p)))))) (defun string->alist (str vars &optional (ring +ring-of-integers+) (order #'lex>)) "Convert a string STR representing a polynomial or polynomial list to an association list (... (MONOM . COEFF) ...)." (poly->alist (string->poly str vars ring order))) (defun poly-equal-no-sugar-p (p q) "Compare polynomials for equality, ignoring sugar." (declare (type poly p q)) (equalp (poly-termlist p) (poly-termlist q))) (defun poly-set-equal-no-sugar-p (p q) "Compare polynomial sets P and Q for equality, ignoring sugar." (null (set-exclusive-or p q :test #'poly-equal-no-sugar-p ))) (defun poly-list-equal-no-sugar-p (p q) "Compare polynomial lists P and Q for equality, ignoring sugar." (every #'poly-equal-no-sugar-p p q))