1 | ;;; -*- Mode: Lisp -*-
|
---|
2 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
3 | ;;;
|
---|
4 | ;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
|
---|
5 | ;;;
|
---|
6 | ;;; This program is free software; you can redistribute it and/or modify
|
---|
7 | ;;; it under the terms of the GNU General Public License as published by
|
---|
8 | ;;; the Free Software Foundation; either version 2 of the License, or
|
---|
9 | ;;; (at your option) any later version.
|
---|
10 | ;;;
|
---|
11 | ;;; This program is distributed in the hope that it will be useful,
|
---|
12 | ;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
13 | ;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
14 | ;;; GNU General Public License for more details.
|
---|
15 | ;;;
|
---|
16 | ;;; You should have received a copy of the GNU General Public License
|
---|
17 | ;;; along with this program; if not, write to the Free Software
|
---|
18 | ;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
---|
19 | ;;;
|
---|
20 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
21 |
|
---|
22 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
23 | ;;
|
---|
24 | ;; Polynomials implemented in CLOS
|
---|
25 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
26 | ;;
|
---|
27 | ;; A polynomial is an collection of terms. A
|
---|
28 | ;; term has a monomial and a coefficient.
|
---|
29 | ;;
|
---|
30 | ;; A polynomial can be represented by an s-expp
|
---|
31 | ;; (EXPR . VARS) where EXPR is an arithmetical formula
|
---|
32 | ;; recursively built of the arithmetical operations,
|
---|
33 | ;; and VARS are the variables of the polynomial.
|
---|
34 | ;; If a subtree of this s-exp is not an arithmetical
|
---|
35 | ;; operator +, -, *, expt, and is not a member
|
---|
36 | ;; of VARS then it represents a scalar expression
|
---|
37 | ;; which the Lisp reader must know how to convert
|
---|
38 | ;; into an object for which can be multiplied by a variable,
|
---|
39 | ;; subject to commutativity and associativity rules.
|
---|
40 | ;;
|
---|
41 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
42 |
|
---|
43 | (defpackage "POL"
|
---|
44 | (:use :cl :ring :ring-and-order :monom :order :term :termlist :infix)
|
---|
45 | (:export "POLY"
|
---|
46 | "POLY-TERMLIST"
|
---|
47 | "POLY-SUGAR"
|
---|
48 | "POLY-RESET-SUGAR"
|
---|
49 | "POLY-LT"
|
---|
50 | "MAKE-POLY-FROM-TERMLIST"
|
---|
51 | "MAKE-POLY-ZERO"
|
---|
52 | "MAKE-POLY-VARIABLE"
|
---|
53 | "POLY-UNIT"
|
---|
54 | "POLY-LM"
|
---|
55 | "POLY-SECOND-LM"
|
---|
56 | "POLY-SECOND-LT"
|
---|
57 | "POLY-LC"
|
---|
58 | "POLY-SECOND-LC"
|
---|
59 | "POLY-ZEROP"
|
---|
60 | "POLY-LENGTH"
|
---|
61 | "SCALAR-TIMES-POLY"
|
---|
62 | "SCALAR-TIMES-POLY-1"
|
---|
63 | "MONOM-TIMES-POLY"
|
---|
64 | "TERM-TIMES-POLY"
|
---|
65 | "POLY-ADD"
|
---|
66 | "POLY-SUB"
|
---|
67 | "POLY-UMINUS"
|
---|
68 | "POLY-MUL"
|
---|
69 | "POLY-EXPT"
|
---|
70 | "POLY-APPEND"
|
---|
71 | "POLY-NREVERSE"
|
---|
72 | "POLY-REVERSE"
|
---|
73 | "POLY-CONTRACT"
|
---|
74 | "POLY-EXTEND"
|
---|
75 | "POLY-ADD-VARIABLES"
|
---|
76 | "POLY-LIST-ADD-VARIABLES"
|
---|
77 | "POLY-STANDARD-EXTENSION"
|
---|
78 | "SATURATION-EXTENSION"
|
---|
79 | "POLYSATURATION-EXTENSION"
|
---|
80 | "SATURATION-EXTENSION-1"
|
---|
81 | "COERCE-COEFF"
|
---|
82 | "POLY-EVAL"
|
---|
83 | "POLY-EVAL-SCALAR"
|
---|
84 | "SPOLY"
|
---|
85 | "POLY-PRIMITIVE-PART"
|
---|
86 | "POLY-CONTENT"
|
---|
87 | "READ-INFIX-FORM"
|
---|
88 | "READ-POLY"
|
---|
89 | "STRING->POLY"
|
---|
90 | "POLY->ALIST"
|
---|
91 | "STRING->ALIST"
|
---|
92 | "POLY-EQUAL-NO-SUGAR-P"
|
---|
93 | "POLY-SET-EQUAL-NO-SUGAR-P"
|
---|
94 | "POLY-LIST-EQUAL-NO-SUGAR-P"
|
---|
95 | ))
|
---|
96 |
|
---|
97 | (in-package :pol)
|
---|
98 |
|
---|
99 | (proclaim '(optimize (speed 0) (space 0) (safety 3) (debug 3)))
|
---|
100 |
|
---|
101 | (defclass poly ()
|
---|
102 | ((expr :initarg :expr :accessor expr))
|
---|
103 | ((vars :initarg :vars :accessor vars))
|
---|
104 | (:default-initargs :expr 0 :vars nil))
|
---|
105 |
|
---|
106 | (defmethod print-object ((self poly) stream)
|
---|
107 | (princ (slot-value self 'expr)))
|
---|
108 |
|
---|
109 | (defmethod poly-add ((p poly) (q poly)))
|
---|
110 |
|
---|
111 | (defmethod poly-sub ((p poly) (q poly)))
|
---|
112 |
|
---|
113 | (defmethod poly-uminus ((self poly)))
|
---|
114 |
|
---|
115 | (defmethod poly-mul ((p poly) (q poly)))
|
---|
116 |
|
---|
117 | (defmethod poly-expt ((self poly) n))
|
---|
118 |
|
---|
119 | (defun poly-eval (expr vars))
|
---|
120 | "Evaluate Lisp form EXPR to a polynomial or a list of polynomials in
|
---|
121 | variables VARS. Return the resulting polynomial or list of
|
---|
122 | polynomials. Standard arithmetical operators in form EXPR are
|
---|
123 | replaced with their analogues in the ring of polynomials, and the
|
---|
124 | resulting expression is evaluated, resulting in a polynomial or a list
|
---|
125 | of polynomials in internal form. A similar operation in another computer
|
---|
126 | algebra system could be called 'expand' or so."
|
---|
127 | (cond
|
---|
128 | ((null expr)
|
---|
129 | ;; Do nothing, nil is a representation of 0
|
---|
130 | ;; in all polynomial rings
|
---|
131 | )
|
---|
132 | ((member expr vars :test #'equalp)
|
---|
133 | (let* ((pos (position expr vars :test #'equalp))
|
---|
134 | (monom (let ((m (make-list (length vars) :initial-element 0)))
|
---|
135 | (setf (nth m pos) 1) m)))
|
---|
136 | (make-instance 'poly :expr (list (cons monom 1)))))
|
---|
137 | ((atom expr)
|
---|
138 | (scalar->poly ring expr vars))
|
---|
139 | ((eq (car expr) list-marker)
|
---|
140 | (cons list-marker (p-eval-list (cdr expr))))
|
---|
141 | (t
|
---|
142 | (case (car expr)
|
---|
143 | (+ (reduce #'p-add (p-eval-list (cdr expr))))
|
---|
144 | (- (case (length expr)
|
---|
145 | (1 (make-poly-zero))
|
---|
146 | (2 (poly-uminus ring (p-eval (cadr expr))))
|
---|
147 | (3 (poly-sub ring-and-order (p-eval (cadr expr)) (p-eval (caddr expr))))
|
---|
148 | (otherwise (poly-sub ring-and-order (p-eval (cadr expr))
|
---|
149 | (reduce #'p-add (p-eval-list (cddr expr)))))))
|
---|
150 | (*
|
---|
151 | (if (endp (cddr expr)) ;unary
|
---|
152 | (p-eval (cdr expr))
|
---|
153 | (reduce #'(lambda (p q) (poly-mul ring-and-order p q)) (p-eval-list (cdr expr)))))
|
---|
154 | (/
|
---|
155 | ;; A polynomial can be divided by a scalar
|
---|
156 | (cond
|
---|
157 | ((endp (cddr expr))
|
---|
158 | ;; A special case (/ ?), the inverse
|
---|
159 | (scalar->poly ring (apply (ring-div ring) (cdr expr)) vars))
|
---|
160 | (t
|
---|
161 | (let ((num (p-eval (cadr expr)))
|
---|
162 | (denom-inverse (apply (ring-div ring)
|
---|
163 | (cons (funcall (ring-unit ring))
|
---|
164 | (mapcar #'p-eval-scalar (cddr expr))))))
|
---|
165 | (scalar-times-poly ring denom-inverse num)))))
|
---|
166 | (expt
|
---|
167 | (cond
|
---|
168 | ((member (cadr expr) vars :test #'equalp)
|
---|
169 | ;;Special handling of (expt var pow)
|
---|
170 | (let ((pos (position (cadr expr) vars :test #'equalp)))
|
---|
171 | (make-poly-variable ring (length vars) pos (caddr expr))))
|
---|
172 | ((not (and (integerp (caddr expr)) (plusp (caddr expr))))
|
---|
173 | ;; Negative power means division in coefficient ring
|
---|
174 | ;; Non-integer power means non-polynomial coefficient
|
---|
175 | (scalar->poly ring expr vars))
|
---|
176 | (t (poly-expt ring-and-order (p-eval (cadr expr)) (caddr expr)))))
|
---|
177 | (otherwise
|
---|
178 | (scalar->poly ring expr vars))))))
|
---|
179 |
|
---|
180 | (defun poly-eval-scalar (expr
|
---|
181 | &optional
|
---|
182 | (ring +ring-of-integers+)
|
---|
183 | &aux
|
---|
184 | (order #'lex>))
|
---|
185 | "Evaluate a scalar expression EXPR in ring RING."
|
---|
186 | (declare (type ring ring))
|
---|
187 | (poly-lc (poly-eval expr nil ring order)))
|
---|
188 |
|
---|
189 |
|
---|
190 |
|
---|
191 |
|
---|