1 | ;;; -*- Mode: Lisp; Syntax: Common-Lisp; Package: Grobner; Base: 10 -*-
|
---|
2 |
|
---|
3 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
4 | ;;;
|
---|
5 | ;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
|
---|
6 | ;;;
|
---|
7 | ;;; This program is free software; you can redistribute it and/or modify
|
---|
8 | ;;; it under the terms of the GNU General Public License as published by
|
---|
9 | ;;; the Free Software Foundation; either version 2 of the License, or
|
---|
10 | ;;; (at your option) any later version.
|
---|
11 | ;;;
|
---|
12 | ;;; This program is distributed in the hope that it will be useful,
|
---|
13 | ;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | ;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | ;;; GNU General Public License for more details.
|
---|
16 | ;;;
|
---|
17 | ;;; You should have received a copy of the GNU General Public License
|
---|
18 | ;;; along with this program; if not, write to the Free Software
|
---|
19 | ;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
---|
20 | ;;;
|
---|
21 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
22 |
|
---|
23 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
24 | ;;
|
---|
25 | ;; Parser of infix notation. This package enables input
|
---|
26 | ;; of polynomials in human-readable notation outside of Maxima,
|
---|
27 | ;; which is very useful for debugging.
|
---|
28 | ;;
|
---|
29 | ;; NOTE: This package is adapted from CGBLisp.
|
---|
30 | ;;
|
---|
31 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
32 |
|
---|
33 | (defpackage "PARSE"
|
---|
34 | (:use :cl :order :polynomial :ring)
|
---|
35 | (:export "PARSE PARSE-TO-ALIST" "PARSE-STRING-TO-ALIST"
|
---|
36 | "PARSE-TO-SORTED-ALIST" "PARSE-STRING-TO-SORTED-ALIST" "^" "["
|
---|
37 | "POLY-EVAL"))
|
---|
38 |
|
---|
39 | (in-package "PARSE")
|
---|
40 |
|
---|
41 | (proclaim '(optimize (speed 0) (space 0) (safety 3) (debug 3)))
|
---|
42 |
|
---|
43 | ;; The function PARSE yields the representations as above. The two functions
|
---|
44 | ;; PARSE-TO-ALIST and PARSE-STRING-TO-ALIST parse polynomials to the alist
|
---|
45 | ;; representations. For example
|
---|
46 | ;;
|
---|
47 | ;; >(parse)x^2-y^2+(-4/3)*u^2*w^3-5 --->
|
---|
48 | ;; (+ (* 1 (^ X 2)) (* -1 (^ Y 2)) (* -4/3 (^ U 2) (^ W 3)) (* -5))
|
---|
49 | ;;
|
---|
50 | ;; >(parse-to-alist '(x y u w))x^2-y^2+(-4/3)*u^2*w^3-5 --->
|
---|
51 | ;; (((0 0 2 3) . -4/3) ((0 2 0 0) . -1) ((2 0 0 0) . 1) ((0 0 0 0) . -5))
|
---|
52 | ;;
|
---|
53 | ;; >(parse-string-to-alist "x^2-y^2+(-4/3)*u^2*w^3-5" '(x y u w)) --->
|
---|
54 | ;; (((0 0 2 3) . -4/3) ((0 2 0 0) . -1) ((2 0 0 0) . 1) ((0 0 0 0) . -5))
|
---|
55 | ;;
|
---|
56 | ;; >(parse-string-to-alist "[x^2-y^2+(-4/3)*u^2*w^3-5,y]" '(x y u w))
|
---|
57 | ;; ([ (((0 0 2 3) . -4/3) ((0 2 0 0) . -1) ((2 0 0 0) . 1)
|
---|
58 | ;; ((0 0 0 0) . -5))
|
---|
59 | ;; (((0 1 0 0) . 1)))
|
---|
60 | ;; The functions PARSE-TO-SORTED-ALIST and PARSE-STRING-TO-SORTED-ALIST
|
---|
61 | ;; in addition sort terms by the predicate defined in the ORDER package
|
---|
62 | ;; For instance:
|
---|
63 | ;; >(parse-to-sorted-alist '(x y u w))x^2-y^2+(-4/3)*u^2*w^3-5
|
---|
64 | ;; (((2 0 0 0) . 1) ((0 2 0 0) . -1) ((0 0 2 3) . -4/3) ((0 0 0 0) . -5))
|
---|
65 | ;; >(parse-to-sorted-alist '(x y u w) t #'grlex>)x^2-y^2+(-4/3)*u^2*w^3-5
|
---|
66 | ;; (((0 0 2 3) . -4/3) ((2 0 0 0) . 1) ((0 2 0 0) . -1) ((0 0 0 0) . -5))
|
---|
67 |
|
---|
68 | ;;(eval-when (compile)
|
---|
69 | ;; (proclaim '(optimize safety)))
|
---|
70 |
|
---|
71 | (defun convert-number (number-or-poly n)
|
---|
72 | "Returns NUMBER-OR-POLY, if it is a polynomial. If it is a number,
|
---|
73 | it converts it to the constant monomial in N variables. If the result
|
---|
74 | is a number then convert it to a polynomial in N variables."
|
---|
75 | (if (numberp number-or-poly)
|
---|
76 | (list (cons (make-list n :initial-element 0) number-or-poly))
|
---|
77 | number-or-poly))
|
---|
78 |
|
---|
79 | (defun $poly+ (p q n order ring)
|
---|
80 | "Add two polynomials P and Q, where each polynomial is either a
|
---|
81 | numeric constant or a polynomial in internal representation. If the
|
---|
82 | result is a number then convert it to a polynomial in N variables."
|
---|
83 | (poly+ (convert-number p n) (convert-number q n) order ring))
|
---|
84 |
|
---|
85 | (defun $poly- (p q n order ring)
|
---|
86 | "Subtract two polynomials P and Q, where each polynomial is either a
|
---|
87 | numeric constant or a polynomial in internal representation. If the
|
---|
88 | result is a number then convert it to a polynomial in N variables."
|
---|
89 | (poly- (convert-number p n) (convert-number q n) order ring))
|
---|
90 |
|
---|
91 | (defun $minus-poly (p n ring)
|
---|
92 | "Negation of P is a polynomial is either a numeric constant or a
|
---|
93 | polynomial in internal representation. If the result is a number then
|
---|
94 | convert it to a polynomial in N variables."
|
---|
95 | (minus-poly (convert-number p n) ring))
|
---|
96 |
|
---|
97 | (defun $poly* (p q n order ring)
|
---|
98 | "Multiply two polynomials P and Q, where each polynomial is either a
|
---|
99 | numeric constant or a polynomial in internal representation. If the
|
---|
100 | result is a number then convert it to a polynomial in N variables."
|
---|
101 | (poly* (convert-number p n) (convert-number q n) order ring))
|
---|
102 |
|
---|
103 | (defun $poly/ (p q ring)
|
---|
104 | "Divide a polynomials P which is either a numeric constant or a
|
---|
105 | polynomial in internal representation, by a number Q."
|
---|
106 | (if (numberp p)
|
---|
107 | (common-lisp:/ p q)
|
---|
108 | (scalar-times-poly (common-lisp:/ q) p ring)))
|
---|
109 |
|
---|
110 | (defun $poly-expt (p l n order ring)
|
---|
111 | "Raise polynomial P, which is a polynomial in internal
|
---|
112 | representation or a numeric constant, to power L. If P is a number,
|
---|
113 | convert the result to a polynomial in N variables."
|
---|
114 | (poly-expt (convert-number p n) l order ring))
|
---|
115 |
|
---|
116 | (defun parse (&optional stream)
|
---|
117 | "Parser of infis expressions with integer/rational coefficients
|
---|
118 | The parser will recognize two kinds of polynomial expressions:
|
---|
119 |
|
---|
120 | - polynomials in fully expanded forms with coefficients
|
---|
121 | written in front of symbolic expressions; constants can be optionally
|
---|
122 | enclosed in (); for example, the infix form
|
---|
123 | X^2-Y^2+(-4/3)*U^2*W^3-5
|
---|
124 | parses to
|
---|
125 | (+ (- (EXPT X 2) (EXPT Y 2)) (* (- (/ 4 3)) (EXPT U 2) (EXPT W 3)) (- 5))
|
---|
126 |
|
---|
127 | - lists of polynomials; for example
|
---|
128 | [X-Y, X^2+3*Z]
|
---|
129 | parses to
|
---|
130 | (:[ (- X Y) (+ (EXPT X 2) (* 3 Z)))
|
---|
131 | where the first symbol [ marks a list of polynomials.
|
---|
132 |
|
---|
133 | -other infix expressions, for example
|
---|
134 | [(X-Y)*(X+Y)/Z,(X+1)^2]
|
---|
135 | parses to:
|
---|
136 | (:[ (/ (* (- X Y) (+ X Y)) Z) (EXPT (+ X 1) 2))
|
---|
137 | Currently this function is implemented using M. Kantrowitz's INFIX package."
|
---|
138 | (read-from-string
|
---|
139 | (concatenate 'string
|
---|
140 | "#I("
|
---|
141 | (with-output-to-string (s)
|
---|
142 | (loop
|
---|
143 | (multiple-value-bind (line eof)
|
---|
144 | (read-line stream t)
|
---|
145 | (format s "~A" line)
|
---|
146 | (when eof (return)))))
|
---|
147 | ")")))
|
---|
148 |
|
---|
149 | ;; Translate output from parse to a pure list form
|
---|
150 | ;; assuming variables are VARS
|
---|
151 |
|
---|
152 | (defun alist-form (plist vars)
|
---|
153 | "Translates an expression PLIST, which should be a list of polynomials
|
---|
154 | in variables VARS, to an alist representation of a polynomial.
|
---|
155 | It returns the alist. See also PARSE-TO-ALIST."
|
---|
156 | (cond
|
---|
157 | ((endp plist) nil)
|
---|
158 | ((eql (first plist) '[)
|
---|
159 | (cons '[ (mapcar #'(lambda (x) (alist-form x vars)) (rest plist))))
|
---|
160 | (t
|
---|
161 | (assert (eql (car plist) '+))
|
---|
162 | (alist-form-1 (rest plist) vars))))
|
---|
163 |
|
---|
164 | (defun alist-form-1 (p vars
|
---|
165 | &aux (ht (make-hash-table
|
---|
166 | :test #'equal :size 16))
|
---|
167 | stack)
|
---|
168 | (dolist (term p)
|
---|
169 | (assert (eql (car term) '*))
|
---|
170 | (incf (gethash (powers (cddr term) vars) ht 0) (second term)))
|
---|
171 | (maphash #'(lambda (key value) (unless (zerop value)
|
---|
172 | (push (cons key value) stack))) ht)
|
---|
173 | stack)
|
---|
174 |
|
---|
175 | (defun powers (monom vars
|
---|
176 | &aux (tab (pairlis vars (make-list (length vars)
|
---|
177 | :initial-element 0))))
|
---|
178 | (dolist (e monom (mapcar #'(lambda (v) (cdr (assoc v tab))) vars))
|
---|
179 | (assert (equal (first e) '^))
|
---|
180 | (assert (integerp (third e)))
|
---|
181 | (assert (= (length e) 3))
|
---|
182 | (let ((x (assoc (second e) tab)))
|
---|
183 | (if (null x) (error "Variable ~a not in the list of variables."
|
---|
184 | (second e))
|
---|
185 | (incf (cdr x) (third e))))))
|
---|
186 |
|
---|
187 |
|
---|
188 | ;; New implementation based on the INFIX package of Mark Kantorowitz
|
---|
189 | (defun parse-to-alist (vars &optional stream)
|
---|
190 | "Parse an expression already in prefix form to an association list form
|
---|
191 | according to the internal CGBlisp polynomial syntax: a polynomial is an
|
---|
192 | alist of pairs (MONOM . COEFFICIENT). For example:
|
---|
193 | (WITH-INPUT-FROM-STRING (S \"X^2-Y^2+(-4/3)*U^2*W^3-5\")
|
---|
194 | (PARSE-TO-ALIST '(X Y U W) S))
|
---|
195 | evaluates to
|
---|
196 | (((0 0 2 3) . -4/3) ((0 2 0 0) . -1) ((2 0 0 0) . 1) ((0 0 0 0) . -5))"
|
---|
197 | (poly-eval (parse stream) vars))
|
---|
198 |
|
---|
199 |
|
---|
200 | (defun parse-string-to-alist (str vars)
|
---|
201 | "Parse string STR and return a polynomial as a sorted association
|
---|
202 | list of pairs (MONOM . COEFFICIENT). For example:
|
---|
203 | (parse-string-to-alist \"[x^2-y^2+(-4/3)*u^2*w^3-5,y]\" '(x y u w))
|
---|
204 | ([ (((0 0 2 3) . -4/3) ((0 2 0 0) . -1) ((2 0 0 0) . 1)
|
---|
205 | ((0 0 0 0) . -5))
|
---|
206 | (((0 1 0 0) . 1)))
|
---|
207 | The functions PARSE-TO-SORTED-ALIST and PARSE-STRING-TO-SORTED-ALIST
|
---|
208 | sort terms by the predicate defined in the ORDER package."
|
---|
209 | (with-input-from-string (stream str)
|
---|
210 | (parse-to-alist vars stream)))
|
---|
211 |
|
---|
212 |
|
---|
213 | (defun parse-to-sorted-alist (vars &optional (order #'lex>) (stream t))
|
---|
214 | "Parses streasm STREAM and returns a polynomial represented as
|
---|
215 | a sorted alist. For example:
|
---|
216 | (WITH-INPUT-FROM-STRING (S \"X^2-Y^2+(-4/3)*U^2*W^3-5\")
|
---|
217 | (PARSE-TO-SORTED-ALIST '(X Y U W) S))
|
---|
218 | returns
|
---|
219 | (((2 0 0 0) . 1) ((0 2 0 0) . -1) ((0 0 2 3) . -4/3) ((0 0 0 0) . -5))
|
---|
220 | and
|
---|
221 | (WITH-INPUT-FROM-STRING (S \"X^2-Y^2+(-4/3)*U^2*W^3-5\")
|
---|
222 | (PARSE-TO-SORTED-ALIST '(X Y U W) T #'GRLEX>) S)
|
---|
223 | returns
|
---|
224 | (((0 0 2 3) . -4/3) ((2 0 0 0) . 1) ((0 2 0 0) . -1) ((0 0 0 0) . -5))"
|
---|
225 | (sort-poly (parse-to-alist vars stream) order))
|
---|
226 |
|
---|
227 | (defun parse-string-to-sorted-alist (str vars &optional (order #'lex>))
|
---|
228 | "Parse a string to a sorted alist form, the internal representation
|
---|
229 | of polynomials used by our system."
|
---|
230 | (with-input-from-string (stream str)
|
---|
231 | (parse-to-sorted-alist vars order stream)))
|
---|
232 |
|
---|
233 | (defun sort-poly-1 (p order)
|
---|
234 | "Sort the terms of a single polynomial P using an admissible monomial order ORDER.
|
---|
235 | Returns the sorted polynomial. Destructively modifies P."
|
---|
236 | (sort p order :key #'first))
|
---|
237 |
|
---|
238 | ;; Sort a polynomial or polynomial list
|
---|
239 | (defun sort-poly (poly-or-poly-list &optional (order #'lex>))
|
---|
240 | "Sort POLY-OR-POLY-LIST, which could be either a single polynomial
|
---|
241 | or a list of polynomials in internal alist representation, using
|
---|
242 | admissible monomial order ORDER. Each polynomial is sorted using
|
---|
243 | SORT-POLY-1."
|
---|
244 | (cond
|
---|
245 | ((eql poly-or-poly-list :syntax-error) nil)
|
---|
246 | ((null poly-or-poly-list) nil)
|
---|
247 | ((eql (car poly-or-poly-list) '[)
|
---|
248 | (cons '[ (mapcar #'(lambda (p) (sort-poly-1 p order))
|
---|
249 | (rest poly-or-poly-list))))
|
---|
250 | (t (sort-poly-1 poly-or-poly-list order))))
|
---|
251 |
|
---|
252 | (defun poly-eval-1 (expr vars order ring
|
---|
253 | &aux
|
---|
254 | (n (length vars))
|
---|
255 | (basis (monom-basis (length vars))))
|
---|
256 | "Evaluate an expression EXPR as polynomial by substituting operators
|
---|
257 | + - * expt with corresponding polynomial operators and variables VARS
|
---|
258 | with monomials (1 0 ... 0), (0 1 ... 0) etc. We use special versions
|
---|
259 | of binary operators $poly+, $poly-, $minus-poly, $poly* and $poly-expt
|
---|
260 | which work like the corresponding functions in the POLY package, but
|
---|
261 | accept scalars as arguments as well."
|
---|
262 | (cond
|
---|
263 | ((numberp expr)
|
---|
264 | (cond
|
---|
265 | ((zerop expr) NIL)
|
---|
266 | (t (list (cons (make-list n :initial-element 0) expr)))))
|
---|
267 | ((symbolp expr)
|
---|
268 | (nth (position expr vars) basis))
|
---|
269 | ((consp expr)
|
---|
270 | (case (car expr)
|
---|
271 | (expt
|
---|
272 | (if (= (length expr) 3)
|
---|
273 | ($poly-expt (poly-eval-1 (cadr expr) vars order ring)
|
---|
274 | (caddr expr)
|
---|
275 | n order ring)
|
---|
276 | (error "Too many arguments to EXPT")))
|
---|
277 | (/
|
---|
278 | (if (and (= (length expr) 3)
|
---|
279 | (numberp (caddr expr)))
|
---|
280 | ($poly/ (cadr expr) (caddr expr) ring)
|
---|
281 | (error "The second argument to / must be a number")))
|
---|
282 | (otherwise
|
---|
283 | (let ((r (mapcar
|
---|
284 | #'(lambda (e) (poly-eval-1 e vars order ring))
|
---|
285 | (cdr expr))))
|
---|
286 | (ecase (car expr)
|
---|
287 | (+ (reduce #'(lambda (p q) ($poly+ p q n order ring)) r))
|
---|
288 | (-
|
---|
289 | (if (endp (cdr r))
|
---|
290 | ($minus-poly (car r) n ring)
|
---|
291 | ($poly- (car r)
|
---|
292 | (reduce #'(lambda (p q) ($poly+ p q n order ring)) (cdr r))
|
---|
293 | n
|
---|
294 | order ring)))
|
---|
295 | (*
|
---|
296 | (reduce #'(lambda (p q) ($poly* p q n order ring)) r))
|
---|
297 | )))))))
|
---|
298 |
|
---|
299 |
|
---|
300 | (defun poly-eval (expr vars &optional (order #'lex>) (ring *coefficient-ring*))
|
---|
301 | "Evaluate an expression EXPR, which should be a polynomial
|
---|
302 | expression or a list of polynomial expressions (a list of expressions
|
---|
303 | marked by prepending keyword :[ to it) given in lisp prefix notation,
|
---|
304 | in variables VARS, which should be a list of symbols. The result of
|
---|
305 | the evaluation is a polynomial or a list of polynomials (marked by
|
---|
306 | prepending symbol '[) in the internal alist form. This evaluator is
|
---|
307 | used by the PARSE package to convert input from strings directly to
|
---|
308 | internal form."
|
---|
309 | (cond
|
---|
310 | ((numberp expr)
|
---|
311 | (unless (zerop expr)
|
---|
312 | (list (cons (make-list (length vars) :initial-element 0) expr))))
|
---|
313 | ((or (symbolp expr) (not (eq (car expr) :[)))
|
---|
314 | (poly-eval-1 expr vars order ring))
|
---|
315 | (t (cons '[ (mapcar #'(lambda (p) (poly-eval-1 p vars order ring)) (rest expr))))))
|
---|
316 |
|
---|
317 |
|
---|
318 | ;; Return the standard basis of the monomials in n variables
|
---|
319 | (defun monom-basis (n &aux
|
---|
320 | (basis
|
---|
321 | (copy-tree
|
---|
322 | (make-list n :initial-element
|
---|
323 | (list (cons
|
---|
324 | (make-list
|
---|
325 | n
|
---|
326 | :initial-element 0)
|
---|
327 | 1))))))
|
---|
328 | "Generate a list of monomials ((1 0 ... 0) (0 1 0 ... 0) ... (0 0 ... 1)
|
---|
329 | which correspond to linear monomials X1, X2, ... XN."
|
---|
330 | (dotimes (i n basis)
|
---|
331 | (setf (elt (caar (elt basis i)) i) 1)))
|
---|