;;; -*- Mode: Lisp; Syntax: Common-Lisp; Package: Grobner; Base: 10 -*- ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;; ;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik ;;; ;;; This program is free software; you can redistribute it and/or modify ;;; it under the terms of the GNU General Public License as published by ;;; the Free Software Foundation; either version 2 of the License, or ;;; (at your option) any later version. ;;; ;;; This program is distributed in the hope that it will be useful, ;;; but WITHOUT ANY WARRANTY; without even the implied warranty of ;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ;;; GNU General Public License for more details. ;;; ;;; You should have received a copy of the GNU General Public License ;;; along with this program; if not, write to the Free Software ;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. ;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; ;; Parser of infix notation. This package enables input ;; of polynomials in human-readable notation outside of Maxima, ;; which is very useful for debugging. ;; ;; NOTE: This package is adapted from CGBLisp. ;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (defpackage "PARSE" (:use :cl :order :monom :term :polynomial :ring) (:export "PARSE PARSE-TO-ALIST" "PARSE-STRING-TO-ALIST" "PARSE-TO-SORTED-ALIST" "PARSE-STRING-TO-SORTED-ALIST" "^" "[" "POLY-EVAL" )) (in-package "PARSE") (proclaim '(optimize (speed 0) (space 0) (safety 3) (debug 3))) ;; The function PARSE yields the representations as above. The two functions ;; PARSE-TO-ALIST and PARSE-STRING-TO-ALIST parse polynomials to the alist ;; representations. For example ;; ;; >(parse)x^2-y^2+(-4/3)*u^2*w^3-5 ---> ;; (+ (* 1 (^ X 2)) (* -1 (^ Y 2)) (* -4/3 (^ U 2) (^ W 3)) (* -5)) ;; ;; >(parse-to-alist '(x y u w))x^2-y^2+(-4/3)*u^2*w^3-5 ---> ;; (((0 0 2 3) . -4/3) ((0 2 0 0) . -1) ((2 0 0 0) . 1) ((0 0 0 0) . -5)) ;; ;; >(parse-string-to-alist "x^2-y^2+(-4/3)*u^2*w^3-5" '(x y u w)) ---> ;; (((0 0 2 3) . -4/3) ((0 2 0 0) . -1) ((2 0 0 0) . 1) ((0 0 0 0) . -5)) ;; ;; >(parse-string-to-alist "[x^2-y^2+(-4/3)*u^2*w^3-5,y]" '(x y u w)) ;; ([ (((0 0 2 3) . -4/3) ((0 2 0 0) . -1) ((2 0 0 0) . 1) ;; ((0 0 0 0) . -5)) ;; (((0 1 0 0) . 1))) ;; The functions PARSE-TO-SORTED-ALIST and PARSE-STRING-TO-SORTED-ALIST ;; in addition sort terms by the predicate defined in the ORDER package ;; For instance: ;; >(parse-to-sorted-alist '(x y u w))x^2-y^2+(-4/3)*u^2*w^3-5 ;; (((2 0 0 0) . 1) ((0 2 0 0) . -1) ((0 0 2 3) . -4/3) ((0 0 0 0) . -5)) ;; >(parse-to-sorted-alist '(x y u w) t #'grlex>)x^2-y^2+(-4/3)*u^2*w^3-5 ;; (((0 0 2 3) . -4/3) ((2 0 0 0) . 1) ((0 2 0 0) . -1) ((0 0 0 0) . -5)) ;;(eval-when (compile) ;; (proclaim '(optimize safety))) (defun convert-number (number-or-poly n) "Returns NUMBER-OR-POLY, if it is a polynomial. If it is a number, it converts it to the constant monomial in N variables. If the result is a number then convert it to a polynomial in N variables." (if (numberp number-or-poly) (make-poly-from-termlist (list (make-term (make-monom :dimension n) number-or-poly))) number-or-poly)) (defun $poly+ (ring-and-order p q n) "Add two polynomials P and Q, where each polynomial is either a numeric constant or a polynomial in internal representation. If the result is a number then convert it to a polynomial in N variables." (poly-add ring-and-order (convert-number p n) (convert-number q n))) (defun $poly- (ring-and-order p q n) "Subtract two polynomials P and Q, where each polynomial is either a numeric constant or a polynomial in internal representation. If the result is a number then convert it to a polynomial in N variables." (poly-sub ring-and-order (convert-number p n) (convert-number q n))) (defun $minus-poly (ring p n) "Negation of P is a polynomial is either a numeric constant or a polynomial in internal representation. If the result is a number then convert it to a polynomial in N variables." (poly-uminus ring (convert-number p n))) (defun $poly* (ring-and-order p q n) "Multiply two polynomials P and Q, where each polynomial is either a numeric constant or a polynomial in internal representation. If the result is a number then convert it to a polynomial in N variables." (poly-mul ring-and-order (convert-number p n) (convert-number q n))) (defun $poly/ (ring p q) "Divide a polynomials P which is either a numeric constant or a polynomial in internal representation, by a number Q." (if (numberp p) (common-lisp:/ p q) (scalar-times-poly ring (common-lisp:/ q) p))) (defun $poly-expt (ring-and-order p l n) "Raise polynomial P, which is a polynomial in internal representation or a numeric constant, to power L. If P is a number, convert the result to a polynomial in N variables." (poly-expt ring-and-order (convert-number p n) l)) (defun parse (&optional stream) "Parser of infis expressions with integer/rational coefficients The parser will recognize two kinds of polynomial expressions: - polynomials in fully expanded forms with coefficients written in front of symbolic expressions; constants can be optionally enclosed in (); for example, the infix form X^2-Y^2+(-4/3)*U^2*W^3-5 parses to (+ (- (EXPT X 2) (EXPT Y 2)) (* (- (/ 4 3)) (EXPT U 2) (EXPT W 3)) (- 5)) - lists of polynomials; for example [X-Y, X^2+3*Z] parses to (:[ (- X Y) (+ (EXPT X 2) (* 3 Z))) where the first symbol [ marks a list of polynomials. -other infix expressions, for example [(X-Y)*(X+Y)/Z,(X+1)^2] parses to: (:[ (/ (* (- X Y) (+ X Y)) Z) (EXPT (+ X 1) 2)) Currently this function is implemented using M. Kantrowitz's INFIX package." (read-from-string (concatenate 'string "#I(" (with-output-to-string (s) (loop (multiple-value-bind (line eof) (read-line stream t) (format s "~A" line) (when eof (return))))) ")"))) ;; Translate output from parse to a pure list form ;; assuming variables are VARS (defun alist-form (plist vars) "Translates an expression PLIST, which should be a list of polynomials in variables VARS, to an alist representation of a polynomial. It returns the alist. See also PARSE-TO-ALIST." (cond ((endp plist) nil) ((eql (first plist) '[) (cons '[ (mapcar #'(lambda (x) (alist-form x vars)) (rest plist)))) (t (assert (eql (car plist) '+)) (alist-form-1 (rest plist) vars)))) (defun alist-form-1 (p vars &aux (ht (make-hash-table :test #'equal :size 16)) stack) (dolist (term p) (assert (eql (car term) '*)) (incf (gethash (powers (cddr term) vars) ht 0) (second term))) (maphash #'(lambda (key value) (unless (zerop value) (push (cons key value) stack))) ht) stack) (defun powers (monom vars &aux (tab (pairlis vars (make-list (length vars) :initial-element 0)))) (dolist (e monom (mapcar #'(lambda (v) (cdr (assoc v tab))) vars)) (assert (equal (first e) '^)) (assert (integerp (third e))) (assert (= (length e) 3)) (let ((x (assoc (second e) tab))) (if (null x) (error "Variable ~a not in the list of variables." (second e)) (incf (cdr x) (third e)))))) ;; New implementation based on the INFIX package of Mark Kantorowitz (defun parse-to-alist (vars &optional stream) "Parse an expression already in prefix form to an association list form according to the internal CGBlisp polynomial syntax: a polynomial is an alist of pairs (MONOM . COEFFICIENT). For example: (WITH-INPUT-FROM-STRING (S \"X^2-Y^2+(-4/3)*U^2*W^3-5\") (PARSE-TO-ALIST '(X Y U W) S)) evaluates to (((0 0 2 3) . -4/3) ((0 2 0 0) . -1) ((2 0 0 0) . 1) ((0 0 0 0) . -5))" (poly-eval (parse stream) vars)) (defun parse-string-to-alist (str vars) "Parse string STR and return a polynomial as a sorted association list of pairs (MONOM . COEFFICIENT). For example: (parse-string-to-alist \"[x^2-y^2+(-4/3)*u^2*w^3-5,y]\" '(x y u w)) ([ (((0 0 2 3) . -4/3) ((0 2 0 0) . -1) ((2 0 0 0) . 1) ((0 0 0 0) . -5)) (((0 1 0 0) . 1))) The functions PARSE-TO-SORTED-ALIST and PARSE-STRING-TO-SORTED-ALIST sort terms by the predicate defined in the ORDER package." (with-input-from-string (stream str) (parse-to-alist vars stream))) (defun parse-to-sorted-alist (vars &optional (order #'lex>) (stream t)) "Parses streasm STREAM and returns a polynomial represented as a sorted alist. For example: (WITH-INPUT-FROM-STRING (S \"X^2-Y^2+(-4/3)*U^2*W^3-5\") (PARSE-TO-SORTED-ALIST '(X Y U W) S)) returns (((2 0 0 0) . 1) ((0 2 0 0) . -1) ((0 0 2 3) . -4/3) ((0 0 0 0) . -5)) and (WITH-INPUT-FROM-STRING (S \"X^2-Y^2+(-4/3)*U^2*W^3-5\") (PARSE-TO-SORTED-ALIST '(X Y U W) T #'GRLEX>) S) returns (((0 0 2 3) . -4/3) ((2 0 0 0) . 1) ((0 2 0 0) . -1) ((0 0 0 0) . -5))" (sort-poly (parse-to-alist vars stream) order)) (defun parse-string-to-sorted-alist (str vars &optional (order #'lex>)) "Parse a string to a sorted alist form, the internal representation of polynomials used by our system." (with-input-from-string (stream str) (parse-to-sorted-alist vars order stream))) (defun sort-poly-1 (p order) "Sort the terms of a single polynomial P using an admissible monomial order ORDER. Returns the sorted polynomial. Destructively modifies P." (sort p order :key #'first)) ;; Sort a polynomial or polynomial list (defun sort-poly (poly-or-poly-list &optional (order #'lex>)) "Sort POLY-OR-POLY-LIST, which could be either a single polynomial or a list of polynomials in internal alist representation, using admissible monomial order ORDER. Each polynomial is sorted using SORT-POLY-1." (cond ((eql poly-or-poly-list :syntax-error) nil) ((null poly-or-poly-list) nil) ((eql (car poly-or-poly-list) '[) (cons '[ (mapcar #'(lambda (p) (sort-poly-1 p order)) (rest poly-or-poly-list)))) (t (sort-poly-1 poly-or-poly-list order)))) (defun poly-eval-1 (ring-and-order expr vars &aux (ring (ro-ring ring-and-order)) (n (length vars)) (basis (monom-basis (length vars)))) "Evaluate an expression EXPR as polynomial by substituting operators + - * expt with corresponding polynomial operators and variables VARS with monomials (1 0 ... 0), (0 1 ... 0) etc. We use special versions of binary operators $poly+, $poly-, $minus-poly, $poly* and $poly-expt which work like the corresponding functions in the POLY package, but accept scalars as arguments as well." (cond ((numberp expr) (cond ((zerop expr) NIL) (t (make-poly-from-termlist (list (make-monom :dimension n) expr))))) ((symbolp expr) (make-monom :initial-exponents (nth (position expr vars) basis)) ) ((consp expr) (case (car expr) (expt (if (= (length expr) 3) ($poly-expt (poly-eval-1 ring-and-order (cadr expr) vars) (caddr expr) n) (error "Too many arguments to EXPT"))) (/ (if (and (= (length expr) 3) (numberp (caddr expr))) ($poly/ ring (cadr expr) (caddr expr)) (error "The second argument to / must be a number"))) (otherwise (let ((r (mapcar #'(lambda (e) (poly-eval-1 ring-and-order e vars)) (cdr expr)))) (ecase (car expr) (+ (reduce #'(lambda (p q) ($poly+ ring-and-order p q n)) r)) (- (if (endp (cdr r)) ($minus-poly ring (car r) n) ($poly- ring-and-order (car r) (reduce #'(lambda (p q) ($poly+ ring-and-order p q n)) (cdr r)) n))) (* (reduce #'(lambda (p q) ($poly* ring-and-order p q n)) r)) ))))))) (defun poly-eval (expr vars &optional (order #'lex>) (ring *coefficient-ring*) &aux (ring-and-order (make-ring-and-order ring order))) "Evaluate an expression EXPR, which should be a polynomial expression or a list of polynomial expressions (a list of expressions marked by prepending keyword :[ to it) given in lisp prefix notation, in variables VARS, which should be a list of symbols. The result of the evaluation is a polynomial or a list of polynomials (marked by prepending symbol '[) in the internal alist form. This evaluator is used by the PARSE package to convert input from strings directly to internal form." (cond ((numberp expr) (unless (zerop expr) (make-poly-from-termlist (list (make-term (make-monom :dimension (length vars)) expr))))) ((or (symbolp expr) (not (eq (car expr) :[))) (poly-eval-1 ring-and-order expr vars)) (t (cons '[ (mapcar #'(lambda (p) (poly-eval-1 ring-and-order p vars)) (rest expr)))))) ;; Return the standard basis of the monomials in n variables (defun monom-basis (n &aux (basis (copy-tree (make-list n :initial-element (list (cons (make-list n :initial-element 0) 1)))))) "Generate a list of monomials ((1 0 ... 0) (0 1 0 ... 0) ... (0 0 ... 1) which correspond to linear monomials X1, X2, ... XN." (dotimes (i n basis) (setf (elt (caar (elt basis i)) i) 1)))