[645] | 1 | ;;; -*- Mode: Lisp; Syntax: Common-Lisp; Package: Grobner; Base: 10 -*-
|
---|
| 2 |
|
---|
| 3 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 4 | ;;;
|
---|
| 5 | ;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
|
---|
| 6 | ;;;
|
---|
| 7 | ;;; This program is free software; you can redistribute it and/or modify
|
---|
| 8 | ;;; it under the terms of the GNU General Public License as published by
|
---|
| 9 | ;;; the Free Software Foundation; either version 2 of the License, or
|
---|
| 10 | ;;; (at your option) any later version.
|
---|
| 11 | ;;;
|
---|
| 12 | ;;; This program is distributed in the hope that it will be useful,
|
---|
| 13 | ;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | ;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | ;;; GNU General Public License for more details.
|
---|
| 16 | ;;;
|
---|
| 17 | ;;; You should have received a copy of the GNU General Public License
|
---|
| 18 | ;;; along with this program; if not, write to the Free Software
|
---|
| 19 | ;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
---|
| 20 | ;;;
|
---|
| 21 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 22 |
|
---|
[646] | 23 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 24 | ;;
|
---|
[648] | 25 | ;; Parser of infix notation. This package enables input
|
---|
[650] | 26 | ;; of polynomials in human-readable notation outside of Maxima,
|
---|
[648] | 27 | ;; which is very useful for debugging.
|
---|
[646] | 28 | ;;
|
---|
| 29 | ;; NOTE: This package is adapted from CGBLisp.
|
---|
| 30 | ;;
|
---|
| 31 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 32 |
|
---|
[645] | 33 | (defpackage "PARSE"
|
---|
[652] | 34 | (:use :cl :order :polynomial :ring)
|
---|
[645] | 35 | (:export "PARSE PARSE-TO-ALIST" "PARSE-STRING-TO-ALIST"
|
---|
| 36 | "PARSE-TO-SORTED-ALIST" "PARSE-STRING-TO-SORTED-ALIST" "^" "["
|
---|
[865] | 37 | "POLY-EVAL"
|
---|
[823] | 38 | ))
|
---|
[645] | 39 |
|
---|
| 40 | (in-package "PARSE")
|
---|
| 41 |
|
---|
| 42 | (proclaim '(optimize (speed 0) (space 0) (safety 3) (debug 3)))
|
---|
| 43 |
|
---|
| 44 | ;; The function PARSE yields the representations as above. The two functions
|
---|
| 45 | ;; PARSE-TO-ALIST and PARSE-STRING-TO-ALIST parse polynomials to the alist
|
---|
| 46 | ;; representations. For example
|
---|
| 47 | ;;
|
---|
| 48 | ;; >(parse)x^2-y^2+(-4/3)*u^2*w^3-5 --->
|
---|
| 49 | ;; (+ (* 1 (^ X 2)) (* -1 (^ Y 2)) (* -4/3 (^ U 2) (^ W 3)) (* -5))
|
---|
| 50 | ;;
|
---|
| 51 | ;; >(parse-to-alist '(x y u w))x^2-y^2+(-4/3)*u^2*w^3-5 --->
|
---|
| 52 | ;; (((0 0 2 3) . -4/3) ((0 2 0 0) . -1) ((2 0 0 0) . 1) ((0 0 0 0) . -5))
|
---|
| 53 | ;;
|
---|
| 54 | ;; >(parse-string-to-alist "x^2-y^2+(-4/3)*u^2*w^3-5" '(x y u w)) --->
|
---|
| 55 | ;; (((0 0 2 3) . -4/3) ((0 2 0 0) . -1) ((2 0 0 0) . 1) ((0 0 0 0) . -5))
|
---|
| 56 | ;;
|
---|
| 57 | ;; >(parse-string-to-alist "[x^2-y^2+(-4/3)*u^2*w^3-5,y]" '(x y u w))
|
---|
| 58 | ;; ([ (((0 0 2 3) . -4/3) ((0 2 0 0) . -1) ((2 0 0 0) . 1)
|
---|
| 59 | ;; ((0 0 0 0) . -5))
|
---|
| 60 | ;; (((0 1 0 0) . 1)))
|
---|
| 61 | ;; The functions PARSE-TO-SORTED-ALIST and PARSE-STRING-TO-SORTED-ALIST
|
---|
| 62 | ;; in addition sort terms by the predicate defined in the ORDER package
|
---|
| 63 | ;; For instance:
|
---|
| 64 | ;; >(parse-to-sorted-alist '(x y u w))x^2-y^2+(-4/3)*u^2*w^3-5
|
---|
| 65 | ;; (((2 0 0 0) . 1) ((0 2 0 0) . -1) ((0 0 2 3) . -4/3) ((0 0 0 0) . -5))
|
---|
| 66 | ;; >(parse-to-sorted-alist '(x y u w) t #'grlex>)x^2-y^2+(-4/3)*u^2*w^3-5
|
---|
| 67 | ;; (((0 0 2 3) . -4/3) ((2 0 0 0) . 1) ((0 2 0 0) . -1) ((0 0 0 0) . -5))
|
---|
| 68 |
|
---|
| 69 | ;;(eval-when (compile)
|
---|
| 70 | ;; (proclaim '(optimize safety)))
|
---|
| 71 |
|
---|
| 72 | (defun convert-number (number-or-poly n)
|
---|
| 73 | "Returns NUMBER-OR-POLY, if it is a polynomial. If it is a number,
|
---|
| 74 | it converts it to the constant monomial in N variables. If the result
|
---|
| 75 | is a number then convert it to a polynomial in N variables."
|
---|
| 76 | (if (numberp number-or-poly)
|
---|
| 77 | (list (cons (make-list n :initial-element 0) number-or-poly))
|
---|
| 78 | number-or-poly))
|
---|
| 79 |
|
---|
| 80 | (defun $poly+ (p q n order ring)
|
---|
| 81 | "Add two polynomials P and Q, where each polynomial is either a
|
---|
| 82 | numeric constant or a polynomial in internal representation. If the
|
---|
| 83 | result is a number then convert it to a polynomial in N variables."
|
---|
| 84 | (poly+ (convert-number p n) (convert-number q n) order ring))
|
---|
| 85 |
|
---|
| 86 | (defun $poly- (p q n order ring)
|
---|
| 87 | "Subtract two polynomials P and Q, where each polynomial is either a
|
---|
| 88 | numeric constant or a polynomial in internal representation. If the
|
---|
| 89 | result is a number then convert it to a polynomial in N variables."
|
---|
| 90 | (poly- (convert-number p n) (convert-number q n) order ring))
|
---|
| 91 |
|
---|
| 92 | (defun $minus-poly (p n ring)
|
---|
| 93 | "Negation of P is a polynomial is either a numeric constant or a
|
---|
| 94 | polynomial in internal representation. If the result is a number then
|
---|
| 95 | convert it to a polynomial in N variables."
|
---|
| 96 | (minus-poly (convert-number p n) ring))
|
---|
| 97 |
|
---|
| 98 | (defun $poly* (p q n order ring)
|
---|
| 99 | "Multiply two polynomials P and Q, where each polynomial is either a
|
---|
| 100 | numeric constant or a polynomial in internal representation. If the
|
---|
| 101 | result is a number then convert it to a polynomial in N variables."
|
---|
| 102 | (poly* (convert-number p n) (convert-number q n) order ring))
|
---|
| 103 |
|
---|
| 104 | (defun $poly/ (p q ring)
|
---|
| 105 | "Divide a polynomials P which is either a numeric constant or a
|
---|
| 106 | polynomial in internal representation, by a number Q."
|
---|
| 107 | (if (numberp p)
|
---|
| 108 | (common-lisp:/ p q)
|
---|
| 109 | (scalar-times-poly (common-lisp:/ q) p ring)))
|
---|
| 110 |
|
---|
| 111 | (defun $poly-expt (p l n order ring)
|
---|
| 112 | "Raise polynomial P, which is a polynomial in internal
|
---|
| 113 | representation or a numeric constant, to power L. If P is a number,
|
---|
| 114 | convert the result to a polynomial in N variables."
|
---|
| 115 | (poly-expt (convert-number p n) l order ring))
|
---|
| 116 |
|
---|
| 117 | (defun parse (&optional stream)
|
---|
| 118 | "Parser of infis expressions with integer/rational coefficients
|
---|
| 119 | The parser will recognize two kinds of polynomial expressions:
|
---|
| 120 |
|
---|
| 121 | - polynomials in fully expanded forms with coefficients
|
---|
| 122 | written in front of symbolic expressions; constants can be optionally
|
---|
| 123 | enclosed in (); for example, the infix form
|
---|
| 124 | X^2-Y^2+(-4/3)*U^2*W^3-5
|
---|
| 125 | parses to
|
---|
| 126 | (+ (- (EXPT X 2) (EXPT Y 2)) (* (- (/ 4 3)) (EXPT U 2) (EXPT W 3)) (- 5))
|
---|
| 127 |
|
---|
| 128 | - lists of polynomials; for example
|
---|
| 129 | [X-Y, X^2+3*Z]
|
---|
| 130 | parses to
|
---|
| 131 | (:[ (- X Y) (+ (EXPT X 2) (* 3 Z)))
|
---|
| 132 | where the first symbol [ marks a list of polynomials.
|
---|
| 133 |
|
---|
| 134 | -other infix expressions, for example
|
---|
| 135 | [(X-Y)*(X+Y)/Z,(X+1)^2]
|
---|
| 136 | parses to:
|
---|
| 137 | (:[ (/ (* (- X Y) (+ X Y)) Z) (EXPT (+ X 1) 2))
|
---|
| 138 | Currently this function is implemented using M. Kantrowitz's INFIX package."
|
---|
| 139 | (read-from-string
|
---|
| 140 | (concatenate 'string
|
---|
| 141 | "#I("
|
---|
| 142 | (with-output-to-string (s)
|
---|
| 143 | (loop
|
---|
| 144 | (multiple-value-bind (line eof)
|
---|
| 145 | (read-line stream t)
|
---|
| 146 | (format s "~A" line)
|
---|
| 147 | (when eof (return)))))
|
---|
| 148 | ")")))
|
---|
| 149 |
|
---|
| 150 | ;; Translate output from parse to a pure list form
|
---|
| 151 | ;; assuming variables are VARS
|
---|
| 152 |
|
---|
| 153 | (defun alist-form (plist vars)
|
---|
| 154 | "Translates an expression PLIST, which should be a list of polynomials
|
---|
| 155 | in variables VARS, to an alist representation of a polynomial.
|
---|
| 156 | It returns the alist. See also PARSE-TO-ALIST."
|
---|
| 157 | (cond
|
---|
| 158 | ((endp plist) nil)
|
---|
| 159 | ((eql (first plist) '[)
|
---|
| 160 | (cons '[ (mapcar #'(lambda (x) (alist-form x vars)) (rest plist))))
|
---|
| 161 | (t
|
---|
| 162 | (assert (eql (car plist) '+))
|
---|
| 163 | (alist-form-1 (rest plist) vars))))
|
---|
| 164 |
|
---|
| 165 | (defun alist-form-1 (p vars
|
---|
| 166 | &aux (ht (make-hash-table
|
---|
| 167 | :test #'equal :size 16))
|
---|
| 168 | stack)
|
---|
| 169 | (dolist (term p)
|
---|
| 170 | (assert (eql (car term) '*))
|
---|
| 171 | (incf (gethash (powers (cddr term) vars) ht 0) (second term)))
|
---|
| 172 | (maphash #'(lambda (key value) (unless (zerop value)
|
---|
| 173 | (push (cons key value) stack))) ht)
|
---|
| 174 | stack)
|
---|
| 175 |
|
---|
| 176 | (defun powers (monom vars
|
---|
| 177 | &aux (tab (pairlis vars (make-list (length vars)
|
---|
| 178 | :initial-element 0))))
|
---|
| 179 | (dolist (e monom (mapcar #'(lambda (v) (cdr (assoc v tab))) vars))
|
---|
| 180 | (assert (equal (first e) '^))
|
---|
| 181 | (assert (integerp (third e)))
|
---|
| 182 | (assert (= (length e) 3))
|
---|
| 183 | (let ((x (assoc (second e) tab)))
|
---|
| 184 | (if (null x) (error "Variable ~a not in the list of variables."
|
---|
| 185 | (second e))
|
---|
| 186 | (incf (cdr x) (third e))))))
|
---|
| 187 |
|
---|
| 188 |
|
---|
| 189 | ;; New implementation based on the INFIX package of Mark Kantorowitz
|
---|
| 190 | (defun parse-to-alist (vars &optional stream)
|
---|
| 191 | "Parse an expression already in prefix form to an association list form
|
---|
| 192 | according to the internal CGBlisp polynomial syntax: a polynomial is an
|
---|
| 193 | alist of pairs (MONOM . COEFFICIENT). For example:
|
---|
| 194 | (WITH-INPUT-FROM-STRING (S \"X^2-Y^2+(-4/3)*U^2*W^3-5\")
|
---|
| 195 | (PARSE-TO-ALIST '(X Y U W) S))
|
---|
| 196 | evaluates to
|
---|
| 197 | (((0 0 2 3) . -4/3) ((0 2 0 0) . -1) ((2 0 0 0) . 1) ((0 0 0 0) . -5))"
|
---|
| 198 | (poly-eval (parse stream) vars))
|
---|
| 199 |
|
---|
| 200 |
|
---|
| 201 | (defun parse-string-to-alist (str vars)
|
---|
| 202 | "Parse string STR and return a polynomial as a sorted association
|
---|
| 203 | list of pairs (MONOM . COEFFICIENT). For example:
|
---|
| 204 | (parse-string-to-alist \"[x^2-y^2+(-4/3)*u^2*w^3-5,y]\" '(x y u w))
|
---|
| 205 | ([ (((0 0 2 3) . -4/3) ((0 2 0 0) . -1) ((2 0 0 0) . 1)
|
---|
| 206 | ((0 0 0 0) . -5))
|
---|
| 207 | (((0 1 0 0) . 1)))
|
---|
| 208 | The functions PARSE-TO-SORTED-ALIST and PARSE-STRING-TO-SORTED-ALIST
|
---|
| 209 | sort terms by the predicate defined in the ORDER package."
|
---|
| 210 | (with-input-from-string (stream str)
|
---|
| 211 | (parse-to-alist vars stream)))
|
---|
| 212 |
|
---|
| 213 |
|
---|
| 214 | (defun parse-to-sorted-alist (vars &optional (order #'lex>) (stream t))
|
---|
| 215 | "Parses streasm STREAM and returns a polynomial represented as
|
---|
| 216 | a sorted alist. For example:
|
---|
| 217 | (WITH-INPUT-FROM-STRING (S \"X^2-Y^2+(-4/3)*U^2*W^3-5\")
|
---|
| 218 | (PARSE-TO-SORTED-ALIST '(X Y U W) S))
|
---|
| 219 | returns
|
---|
| 220 | (((2 0 0 0) . 1) ((0 2 0 0) . -1) ((0 0 2 3) . -4/3) ((0 0 0 0) . -5))
|
---|
| 221 | and
|
---|
| 222 | (WITH-INPUT-FROM-STRING (S \"X^2-Y^2+(-4/3)*U^2*W^3-5\")
|
---|
| 223 | (PARSE-TO-SORTED-ALIST '(X Y U W) T #'GRLEX>) S)
|
---|
| 224 | returns
|
---|
| 225 | (((0 0 2 3) . -4/3) ((2 0 0 0) . 1) ((0 2 0 0) . -1) ((0 0 0 0) . -5))"
|
---|
| 226 | (sort-poly (parse-to-alist vars stream) order))
|
---|
| 227 |
|
---|
| 228 | (defun parse-string-to-sorted-alist (str vars &optional (order #'lex>))
|
---|
| 229 | "Parse a string to a sorted alist form, the internal representation
|
---|
| 230 | of polynomials used by our system."
|
---|
| 231 | (with-input-from-string (stream str)
|
---|
| 232 | (parse-to-sorted-alist vars order stream)))
|
---|
| 233 |
|
---|
| 234 | (defun sort-poly-1 (p order)
|
---|
| 235 | "Sort the terms of a single polynomial P using an admissible monomial order ORDER.
|
---|
| 236 | Returns the sorted polynomial. Destructively modifies P."
|
---|
| 237 | (sort p order :key #'first))
|
---|
| 238 |
|
---|
| 239 | ;; Sort a polynomial or polynomial list
|
---|
| 240 | (defun sort-poly (poly-or-poly-list &optional (order #'lex>))
|
---|
| 241 | "Sort POLY-OR-POLY-LIST, which could be either a single polynomial
|
---|
| 242 | or a list of polynomials in internal alist representation, using
|
---|
| 243 | admissible monomial order ORDER. Each polynomial is sorted using
|
---|
| 244 | SORT-POLY-1."
|
---|
| 245 | (cond
|
---|
| 246 | ((eql poly-or-poly-list :syntax-error) nil)
|
---|
| 247 | ((null poly-or-poly-list) nil)
|
---|
| 248 | ((eql (car poly-or-poly-list) '[)
|
---|
| 249 | (cons '[ (mapcar #'(lambda (p) (sort-poly-1 p order))
|
---|
| 250 | (rest poly-or-poly-list))))
|
---|
| 251 | (t (sort-poly-1 poly-or-poly-list order))))
|
---|
| 252 |
|
---|
| 253 | (defun poly-eval-1 (expr vars order ring
|
---|
| 254 | &aux
|
---|
| 255 | (n (length vars))
|
---|
| 256 | (basis (monom-basis (length vars))))
|
---|
| 257 | "Evaluate an expression EXPR as polynomial by substituting operators
|
---|
| 258 | + - * expt with corresponding polynomial operators and variables VARS
|
---|
| 259 | with monomials (1 0 ... 0), (0 1 ... 0) etc. We use special versions
|
---|
| 260 | of binary operators $poly+, $poly-, $minus-poly, $poly* and $poly-expt
|
---|
| 261 | which work like the corresponding functions in the POLY package, but
|
---|
| 262 | accept scalars as arguments as well."
|
---|
| 263 | (cond
|
---|
| 264 | ((numberp expr)
|
---|
| 265 | (cond
|
---|
| 266 | ((zerop expr) NIL)
|
---|
| 267 | (t (list (cons (make-list n :initial-element 0) expr)))))
|
---|
| 268 | ((symbolp expr)
|
---|
| 269 | (nth (position expr vars) basis))
|
---|
| 270 | ((consp expr)
|
---|
| 271 | (case (car expr)
|
---|
| 272 | (expt
|
---|
| 273 | (if (= (length expr) 3)
|
---|
| 274 | ($poly-expt (poly-eval-1 (cadr expr) vars order ring)
|
---|
| 275 | (caddr expr)
|
---|
| 276 | n order ring)
|
---|
| 277 | (error "Too many arguments to EXPT")))
|
---|
| 278 | (/
|
---|
| 279 | (if (and (= (length expr) 3)
|
---|
| 280 | (numberp (caddr expr)))
|
---|
| 281 | ($poly/ (cadr expr) (caddr expr) ring)
|
---|
| 282 | (error "The second argument to / must be a number")))
|
---|
| 283 | (otherwise
|
---|
| 284 | (let ((r (mapcar
|
---|
| 285 | #'(lambda (e) (poly-eval-1 e vars order ring))
|
---|
| 286 | (cdr expr))))
|
---|
| 287 | (ecase (car expr)
|
---|
| 288 | (+ (reduce #'(lambda (p q) ($poly+ p q n order ring)) r))
|
---|
| 289 | (-
|
---|
| 290 | (if (endp (cdr r))
|
---|
| 291 | ($minus-poly (car r) n ring)
|
---|
| 292 | ($poly- (car r)
|
---|
| 293 | (reduce #'(lambda (p q) ($poly+ p q n order ring)) (cdr r))
|
---|
| 294 | n
|
---|
| 295 | order ring)))
|
---|
| 296 | (*
|
---|
| 297 | (reduce #'(lambda (p q) ($poly* p q n order ring)) r))
|
---|
| 298 | )))))))
|
---|
| 299 |
|
---|
| 300 |
|
---|
| 301 | (defun poly-eval (expr vars &optional (order #'lex>) (ring *coefficient-ring*))
|
---|
| 302 | "Evaluate an expression EXPR, which should be a polynomial
|
---|
| 303 | expression or a list of polynomial expressions (a list of expressions
|
---|
| 304 | marked by prepending keyword :[ to it) given in lisp prefix notation,
|
---|
| 305 | in variables VARS, which should be a list of symbols. The result of
|
---|
| 306 | the evaluation is a polynomial or a list of polynomials (marked by
|
---|
| 307 | prepending symbol '[) in the internal alist form. This evaluator is
|
---|
| 308 | used by the PARSE package to convert input from strings directly to
|
---|
| 309 | internal form."
|
---|
| 310 | (cond
|
---|
| 311 | ((numberp expr)
|
---|
| 312 | (unless (zerop expr)
|
---|
| 313 | (list (cons (make-list (length vars) :initial-element 0) expr))))
|
---|
| 314 | ((or (symbolp expr) (not (eq (car expr) :[)))
|
---|
| 315 | (poly-eval-1 expr vars order ring))
|
---|
| 316 | (t (cons '[ (mapcar #'(lambda (p) (poly-eval-1 p vars order ring)) (rest expr))))))
|
---|
| 317 |
|
---|
| 318 |
|
---|
| 319 | ;; Return the standard basis of the monomials in n variables
|
---|
| 320 | (defun monom-basis (n &aux
|
---|
| 321 | (basis
|
---|
| 322 | (copy-tree
|
---|
| 323 | (make-list n :initial-element
|
---|
| 324 | (list (cons
|
---|
| 325 | (make-list
|
---|
| 326 | n
|
---|
| 327 | :initial-element 0)
|
---|
| 328 | 1))))))
|
---|
| 329 | "Generate a list of monomials ((1 0 ... 0) (0 1 0 ... 0) ... (0 0 ... 1)
|
---|
| 330 | which correspond to linear monomials X1, X2, ... XN."
|
---|
| 331 | (dotimes (i n basis)
|
---|
| 332 | (setf (elt (caar (elt basis i)) i) 1)))
|
---|