| [645] | 1 | ;;; -*- Mode: Lisp; Syntax: Common-Lisp; Package: Grobner; Base: 10 -*- | 
|---|
|  | 2 |  | 
|---|
|  | 3 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
|  | 4 | ;;; | 
|---|
|  | 5 | ;;;  Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu> | 
|---|
|  | 6 | ;;; | 
|---|
|  | 7 | ;;;  This program is free software; you can redistribute it and/or modify | 
|---|
|  | 8 | ;;;  it under the terms of the GNU General Public License as published by | 
|---|
|  | 9 | ;;;  the Free Software Foundation; either version 2 of the License, or | 
|---|
|  | 10 | ;;;  (at your option) any later version. | 
|---|
|  | 11 | ;;; | 
|---|
|  | 12 | ;;;  This program is distributed in the hope that it will be useful, | 
|---|
|  | 13 | ;;;  but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|---|
|  | 14 | ;;;  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|---|
|  | 15 | ;;;  GNU General Public License for more details. | 
|---|
|  | 16 | ;;; | 
|---|
|  | 17 | ;;;  You should have received a copy of the GNU General Public License | 
|---|
|  | 18 | ;;;  along with this program; if not, write to the Free Software | 
|---|
|  | 19 | ;;;  Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | 
|---|
|  | 20 | ;;; | 
|---|
|  | 21 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
|  | 22 |  | 
|---|
| [646] | 23 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
|  | 24 | ;; | 
|---|
|  | 25 | ;; Parser of infix notation. | 
|---|
|  | 26 | ;; | 
|---|
|  | 27 | ;; NOTE: This package is adapted from CGBLisp. | 
|---|
|  | 28 | ;; | 
|---|
|  | 29 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
|  | 30 |  | 
|---|
| [645] | 31 | (defpackage "PARSE" | 
|---|
|  | 32 | (:use :cl :order :poly :ring) | 
|---|
|  | 33 | (:export "PARSE PARSE-TO-ALIST" "PARSE-STRING-TO-ALIST" | 
|---|
|  | 34 | "PARSE-TO-SORTED-ALIST" "PARSE-STRING-TO-SORTED-ALIST" "^" "[" | 
|---|
|  | 35 | "POLY-EVAL")) | 
|---|
|  | 36 |  | 
|---|
|  | 37 | (in-package "PARSE") | 
|---|
|  | 38 |  | 
|---|
|  | 39 | (proclaim '(optimize (speed 0) (space 0) (safety 3) (debug 3))) | 
|---|
|  | 40 |  | 
|---|
|  | 41 | ;; The function PARSE yields the representations as above.  The two functions | 
|---|
|  | 42 | ;; PARSE-TO-ALIST and PARSE-STRING-TO-ALIST parse polynomials to the alist | 
|---|
|  | 43 | ;; representations. For example | 
|---|
|  | 44 | ;; | 
|---|
|  | 45 | ;; >(parse)x^2-y^2+(-4/3)*u^2*w^3-5 ---> | 
|---|
|  | 46 | ;; (+ (* 1 (^ X 2)) (* -1 (^ Y 2)) (* -4/3 (^ U 2) (^ W 3)) (* -5)) | 
|---|
|  | 47 | ;; | 
|---|
|  | 48 | ;; >(parse-to-alist '(x y u w))x^2-y^2+(-4/3)*u^2*w^3-5 ---> | 
|---|
|  | 49 | ;; (((0 0 2 3) . -4/3) ((0 2 0 0) . -1) ((2 0 0 0) . 1) ((0 0 0 0) . -5)) | 
|---|
|  | 50 | ;; | 
|---|
|  | 51 | ;; >(parse-string-to-alist "x^2-y^2+(-4/3)*u^2*w^3-5" '(x y u w)) ---> | 
|---|
|  | 52 | ;; (((0 0 2 3) . -4/3) ((0 2 0 0) . -1) ((2 0 0 0) . 1) ((0 0 0 0) . -5)) | 
|---|
|  | 53 | ;; | 
|---|
|  | 54 | ;; >(parse-string-to-alist "[x^2-y^2+(-4/3)*u^2*w^3-5,y]" '(x y u w)) | 
|---|
|  | 55 | ;; ([ (((0 0 2 3) . -4/3) ((0 2 0 0) . -1) ((2 0 0 0) . 1) | 
|---|
|  | 56 | ;;     ((0 0 0 0) . -5)) | 
|---|
|  | 57 | ;;    (((0 1 0 0) . 1))) | 
|---|
|  | 58 | ;; The functions PARSE-TO-SORTED-ALIST and PARSE-STRING-TO-SORTED-ALIST | 
|---|
|  | 59 | ;; in addition sort terms by the predicate defined in the ORDER package | 
|---|
|  | 60 | ;; For instance: | 
|---|
|  | 61 | ;; >(parse-to-sorted-alist '(x y u w))x^2-y^2+(-4/3)*u^2*w^3-5 | 
|---|
|  | 62 | ;; (((2 0 0 0) . 1) ((0 2 0 0) . -1) ((0 0 2 3) . -4/3) ((0 0 0 0) . -5)) | 
|---|
|  | 63 | ;; >(parse-to-sorted-alist '(x y u w) t #'grlex>)x^2-y^2+(-4/3)*u^2*w^3-5 | 
|---|
|  | 64 | ;; (((0 0 2 3) . -4/3) ((2 0 0 0) . 1) ((0 2 0 0) . -1) ((0 0 0 0) . -5)) | 
|---|
|  | 65 |  | 
|---|
|  | 66 | ;;(eval-when (compile) | 
|---|
|  | 67 | ;;  (proclaim '(optimize safety))) | 
|---|
|  | 68 |  | 
|---|
|  | 69 | (defun convert-number (number-or-poly n) | 
|---|
|  | 70 | "Returns NUMBER-OR-POLY, if it is a polynomial. If it is a number, | 
|---|
|  | 71 | it converts it to the constant monomial in N variables. If the result | 
|---|
|  | 72 | is a number then convert it to a polynomial in N variables." | 
|---|
|  | 73 | (if (numberp number-or-poly) | 
|---|
|  | 74 | (list (cons (make-list n :initial-element 0) number-or-poly)) | 
|---|
|  | 75 | number-or-poly)) | 
|---|
|  | 76 |  | 
|---|
|  | 77 | (defun $poly+ (p q n order ring) | 
|---|
|  | 78 | "Add two polynomials P and Q, where each polynomial is either a | 
|---|
|  | 79 | numeric constant or a polynomial in internal representation. If the | 
|---|
|  | 80 | result is a number then convert it to a polynomial in N variables." | 
|---|
|  | 81 | (poly+ (convert-number p n) (convert-number q n) order ring)) | 
|---|
|  | 82 |  | 
|---|
|  | 83 | (defun $poly- (p q n order ring) | 
|---|
|  | 84 | "Subtract two polynomials P and Q, where each polynomial is either a | 
|---|
|  | 85 | numeric constant or a polynomial in internal representation. If the | 
|---|
|  | 86 | result is a number then convert it to a polynomial in N variables." | 
|---|
|  | 87 | (poly- (convert-number p n) (convert-number q n) order ring)) | 
|---|
|  | 88 |  | 
|---|
|  | 89 | (defun $minus-poly (p n ring) | 
|---|
|  | 90 | "Negation of P is a polynomial is either a numeric constant or a | 
|---|
|  | 91 | polynomial in internal representation. If the result is a number then | 
|---|
|  | 92 | convert it to a polynomial in N variables." | 
|---|
|  | 93 | (minus-poly (convert-number p n) ring)) | 
|---|
|  | 94 |  | 
|---|
|  | 95 | (defun $poly* (p q n order ring) | 
|---|
|  | 96 | "Multiply two polynomials P and Q, where each polynomial is either a | 
|---|
|  | 97 | numeric constant or a polynomial in internal representation. If the | 
|---|
|  | 98 | result is a number then convert it to a polynomial in N variables." | 
|---|
|  | 99 | (poly* (convert-number p n) (convert-number q n) order ring)) | 
|---|
|  | 100 |  | 
|---|
|  | 101 | (defun $poly/ (p q ring) | 
|---|
|  | 102 | "Divide a polynomials P which is either a numeric constant or a | 
|---|
|  | 103 | polynomial in internal representation, by a number Q." | 
|---|
|  | 104 | (if (numberp p) | 
|---|
|  | 105 | (common-lisp:/ p q) | 
|---|
|  | 106 | (scalar-times-poly (common-lisp:/ q) p ring))) | 
|---|
|  | 107 |  | 
|---|
|  | 108 | (defun $poly-expt (p l n order ring) | 
|---|
|  | 109 | "Raise polynomial P, which is a polynomial in internal | 
|---|
|  | 110 | representation or a numeric constant, to power L. If P is a number, | 
|---|
|  | 111 | convert the result to a polynomial in N variables." | 
|---|
|  | 112 | (poly-expt (convert-number p n) l order ring)) | 
|---|
|  | 113 |  | 
|---|
|  | 114 | (defun parse (&optional stream) | 
|---|
|  | 115 | "Parser of infis expressions with integer/rational coefficients | 
|---|
|  | 116 | The parser will recognize two kinds of polynomial expressions: | 
|---|
|  | 117 |  | 
|---|
|  | 118 | - polynomials in fully expanded forms with coefficients | 
|---|
|  | 119 | written in front of symbolic expressions; constants can be optionally | 
|---|
|  | 120 | enclosed in (); for example, the infix form | 
|---|
|  | 121 | X^2-Y^2+(-4/3)*U^2*W^3-5 | 
|---|
|  | 122 | parses to | 
|---|
|  | 123 | (+ (- (EXPT X 2) (EXPT Y 2)) (* (- (/ 4 3)) (EXPT U 2) (EXPT W 3)) (- 5)) | 
|---|
|  | 124 |  | 
|---|
|  | 125 | - lists of polynomials; for example | 
|---|
|  | 126 | [X-Y, X^2+3*Z] | 
|---|
|  | 127 | parses to | 
|---|
|  | 128 | (:[ (- X Y) (+ (EXPT X 2) (* 3 Z))) | 
|---|
|  | 129 | where the first symbol [ marks a list of polynomials. | 
|---|
|  | 130 |  | 
|---|
|  | 131 | -other infix expressions, for example | 
|---|
|  | 132 | [(X-Y)*(X+Y)/Z,(X+1)^2] | 
|---|
|  | 133 | parses to: | 
|---|
|  | 134 | (:[ (/ (* (- X Y) (+ X Y)) Z) (EXPT (+ X 1) 2)) | 
|---|
|  | 135 | Currently this function is implemented using M. Kantrowitz's INFIX package." | 
|---|
|  | 136 | (read-from-string | 
|---|
|  | 137 | (concatenate 'string | 
|---|
|  | 138 | "#I(" | 
|---|
|  | 139 | (with-output-to-string (s) | 
|---|
|  | 140 | (loop | 
|---|
|  | 141 | (multiple-value-bind (line eof) | 
|---|
|  | 142 | (read-line stream t) | 
|---|
|  | 143 | (format s "~A" line) | 
|---|
|  | 144 | (when eof (return))))) | 
|---|
|  | 145 | ")"))) | 
|---|
|  | 146 |  | 
|---|
|  | 147 | ;; Translate output from parse to a pure list form | 
|---|
|  | 148 | ;; assuming variables are VARS | 
|---|
|  | 149 |  | 
|---|
|  | 150 | (defun alist-form (plist vars) | 
|---|
|  | 151 | "Translates an expression PLIST, which should be a list of polynomials | 
|---|
|  | 152 | in variables VARS, to an alist representation of a polynomial. | 
|---|
|  | 153 | It returns the alist. See also PARSE-TO-ALIST." | 
|---|
|  | 154 | (cond | 
|---|
|  | 155 | ((endp plist) nil) | 
|---|
|  | 156 | ((eql (first plist) '[) | 
|---|
|  | 157 | (cons '[ (mapcar #'(lambda (x) (alist-form x vars)) (rest plist)))) | 
|---|
|  | 158 | (t | 
|---|
|  | 159 | (assert (eql (car plist) '+)) | 
|---|
|  | 160 | (alist-form-1 (rest plist) vars)))) | 
|---|
|  | 161 |  | 
|---|
|  | 162 | (defun alist-form-1 (p vars | 
|---|
|  | 163 | &aux (ht (make-hash-table | 
|---|
|  | 164 | :test #'equal :size 16)) | 
|---|
|  | 165 | stack) | 
|---|
|  | 166 | (dolist (term p) | 
|---|
|  | 167 | (assert (eql (car term) '*)) | 
|---|
|  | 168 | (incf  (gethash (powers (cddr term) vars) ht 0) (second term))) | 
|---|
|  | 169 | (maphash #'(lambda (key value) (unless (zerop value) | 
|---|
|  | 170 | (push (cons key value) stack))) ht) | 
|---|
|  | 171 | stack) | 
|---|
|  | 172 |  | 
|---|
|  | 173 | (defun powers (monom vars | 
|---|
|  | 174 | &aux (tab (pairlis vars (make-list (length vars) | 
|---|
|  | 175 | :initial-element 0)))) | 
|---|
|  | 176 | (dolist (e monom (mapcar #'(lambda (v) (cdr (assoc v tab))) vars)) | 
|---|
|  | 177 | (assert (equal (first e) '^)) | 
|---|
|  | 178 | (assert (integerp (third e))) | 
|---|
|  | 179 | (assert (= (length e) 3)) | 
|---|
|  | 180 | (let ((x (assoc (second e) tab))) | 
|---|
|  | 181 | (if (null x) (error "Variable ~a not in the list of variables." | 
|---|
|  | 182 | (second e)) | 
|---|
|  | 183 | (incf (cdr x) (third e)))))) | 
|---|
|  | 184 |  | 
|---|
|  | 185 |  | 
|---|
|  | 186 | ;; New implementation based on the INFIX package of Mark Kantorowitz | 
|---|
|  | 187 | (defun parse-to-alist (vars &optional stream) | 
|---|
|  | 188 | "Parse an expression already in prefix form to an association list form | 
|---|
|  | 189 | according to the internal CGBlisp polynomial syntax: a polynomial is an | 
|---|
|  | 190 | alist of pairs (MONOM . COEFFICIENT). For example: | 
|---|
|  | 191 | (WITH-INPUT-FROM-STRING (S \"X^2-Y^2+(-4/3)*U^2*W^3-5\") | 
|---|
|  | 192 | (PARSE-TO-ALIST '(X Y U W) S)) | 
|---|
|  | 193 | evaluates to | 
|---|
|  | 194 | (((0 0 2 3) . -4/3) ((0 2 0 0) . -1) ((2 0 0 0) . 1) ((0 0 0 0) . -5))" | 
|---|
|  | 195 | (poly-eval (parse stream) vars)) | 
|---|
|  | 196 |  | 
|---|
|  | 197 |  | 
|---|
|  | 198 | (defun parse-string-to-alist (str vars) | 
|---|
|  | 199 | "Parse string STR and return a polynomial as a sorted association | 
|---|
|  | 200 | list of pairs (MONOM . COEFFICIENT). For example: | 
|---|
|  | 201 | (parse-string-to-alist \"[x^2-y^2+(-4/3)*u^2*w^3-5,y]\" '(x y u w)) | 
|---|
|  | 202 | ([ (((0 0 2 3) . -4/3) ((0 2 0 0) . -1) ((2 0 0 0) . 1) | 
|---|
|  | 203 | ((0 0 0 0) . -5)) | 
|---|
|  | 204 | (((0 1 0 0) . 1))) | 
|---|
|  | 205 | The functions PARSE-TO-SORTED-ALIST and PARSE-STRING-TO-SORTED-ALIST | 
|---|
|  | 206 | sort terms by the predicate defined in the ORDER package." | 
|---|
|  | 207 | (with-input-from-string (stream str) | 
|---|
|  | 208 | (parse-to-alist vars stream))) | 
|---|
|  | 209 |  | 
|---|
|  | 210 |  | 
|---|
|  | 211 | (defun parse-to-sorted-alist (vars &optional (order #'lex>) (stream t)) | 
|---|
|  | 212 | "Parses streasm STREAM and returns a polynomial represented as | 
|---|
|  | 213 | a sorted alist. For example: | 
|---|
|  | 214 | (WITH-INPUT-FROM-STRING (S \"X^2-Y^2+(-4/3)*U^2*W^3-5\") | 
|---|
|  | 215 | (PARSE-TO-SORTED-ALIST '(X Y U W) S)) | 
|---|
|  | 216 | returns | 
|---|
|  | 217 | (((2 0 0 0) . 1) ((0 2 0 0) . -1) ((0 0 2 3) . -4/3) ((0 0 0 0) . -5)) | 
|---|
|  | 218 | and | 
|---|
|  | 219 | (WITH-INPUT-FROM-STRING (S \"X^2-Y^2+(-4/3)*U^2*W^3-5\") | 
|---|
|  | 220 | (PARSE-TO-SORTED-ALIST '(X Y U W) T #'GRLEX>) S) | 
|---|
|  | 221 | returns | 
|---|
|  | 222 | (((0 0 2 3) . -4/3) ((2 0 0 0) . 1) ((0 2 0 0) . -1) ((0 0 0 0) . -5))" | 
|---|
|  | 223 | (sort-poly (parse-to-alist vars stream) order)) | 
|---|
|  | 224 |  | 
|---|
|  | 225 | (defun parse-string-to-sorted-alist (str vars &optional (order #'lex>)) | 
|---|
|  | 226 | "Parse a string to a sorted alist form, the internal representation | 
|---|
|  | 227 | of polynomials used by our system." | 
|---|
|  | 228 | (with-input-from-string (stream str) | 
|---|
|  | 229 | (parse-to-sorted-alist vars order stream))) | 
|---|
|  | 230 |  | 
|---|
|  | 231 | (defun sort-poly-1 (p order) | 
|---|
|  | 232 | "Sort the terms of a single polynomial P using an admissible monomial order ORDER. | 
|---|
|  | 233 | Returns the sorted polynomial. Destructively modifies P." | 
|---|
|  | 234 | (sort p order :key #'first)) | 
|---|
|  | 235 |  | 
|---|
|  | 236 | ;; Sort a polynomial or polynomial list | 
|---|
|  | 237 | (defun sort-poly (poly-or-poly-list &optional (order #'lex>)) | 
|---|
|  | 238 | "Sort POLY-OR-POLY-LIST, which could be either a single polynomial | 
|---|
|  | 239 | or a list of polynomials in internal alist representation, using | 
|---|
|  | 240 | admissible monomial order ORDER. Each polynomial is sorted using | 
|---|
|  | 241 | SORT-POLY-1." | 
|---|
|  | 242 | (cond | 
|---|
|  | 243 | ((eql poly-or-poly-list :syntax-error) nil) | 
|---|
|  | 244 | ((null poly-or-poly-list) nil) | 
|---|
|  | 245 | ((eql (car poly-or-poly-list) '[) | 
|---|
|  | 246 | (cons '[ (mapcar #'(lambda (p) (sort-poly-1 p order)) | 
|---|
|  | 247 | (rest poly-or-poly-list)))) | 
|---|
|  | 248 | (t (sort-poly-1 poly-or-poly-list order)))) | 
|---|
|  | 249 |  | 
|---|
|  | 250 | (defun poly-eval-1 (expr vars order ring | 
|---|
|  | 251 | &aux | 
|---|
|  | 252 | (n (length vars)) | 
|---|
|  | 253 | (basis (monom-basis (length vars)))) | 
|---|
|  | 254 | "Evaluate an expression EXPR as polynomial by substituting operators | 
|---|
|  | 255 | + - * expt with corresponding polynomial operators and variables VARS | 
|---|
|  | 256 | with monomials (1 0 ... 0), (0 1 ... 0) etc.  We use special versions | 
|---|
|  | 257 | of binary operators $poly+, $poly-, $minus-poly, $poly* and $poly-expt | 
|---|
|  | 258 | which work like the corresponding functions in the POLY package, but | 
|---|
|  | 259 | accept scalars as arguments as well." | 
|---|
|  | 260 | (cond | 
|---|
|  | 261 | ((numberp expr) | 
|---|
|  | 262 | (cond | 
|---|
|  | 263 | ((zerop expr) NIL) | 
|---|
|  | 264 | (t (list (cons (make-list n :initial-element 0) expr))))) | 
|---|
|  | 265 | ((symbolp expr) | 
|---|
|  | 266 | (nth (position expr vars) basis)) | 
|---|
|  | 267 | ((consp expr) | 
|---|
|  | 268 | (case (car expr) | 
|---|
|  | 269 | (expt | 
|---|
|  | 270 | (if (= (length expr) 3) | 
|---|
|  | 271 | ($poly-expt (poly-eval-1 (cadr expr) vars order ring) | 
|---|
|  | 272 | (caddr expr) | 
|---|
|  | 273 | n order ring) | 
|---|
|  | 274 | (error "Too many arguments to EXPT"))) | 
|---|
|  | 275 | (/ | 
|---|
|  | 276 | (if (and (= (length expr) 3) | 
|---|
|  | 277 | (numberp (caddr expr))) | 
|---|
|  | 278 | ($poly/ (cadr expr) (caddr expr) ring) | 
|---|
|  | 279 | (error "The second argument to / must be a number"))) | 
|---|
|  | 280 | (otherwise | 
|---|
|  | 281 | (let ((r (mapcar | 
|---|
|  | 282 | #'(lambda (e) (poly-eval-1 e vars order ring)) | 
|---|
|  | 283 | (cdr expr)))) | 
|---|
|  | 284 | (ecase (car expr) | 
|---|
|  | 285 | (+ (reduce #'(lambda (p q) ($poly+ p q n order ring)) r)) | 
|---|
|  | 286 | (- | 
|---|
|  | 287 | (if (endp (cdr r)) | 
|---|
|  | 288 | ($minus-poly (car r) n ring) | 
|---|
|  | 289 | ($poly- (car r) | 
|---|
|  | 290 | (reduce #'(lambda (p q) ($poly+ p q n order ring)) (cdr r)) | 
|---|
|  | 291 | n | 
|---|
|  | 292 | order ring))) | 
|---|
|  | 293 | (* | 
|---|
|  | 294 | (reduce #'(lambda (p q) ($poly* p q n order ring)) r)) | 
|---|
|  | 295 | ))))))) | 
|---|
|  | 296 |  | 
|---|
|  | 297 |  | 
|---|
|  | 298 | (defun poly-eval (expr vars &optional (order #'lex>) (ring *coefficient-ring*)) | 
|---|
|  | 299 | "Evaluate an expression EXPR, which should be a polynomial | 
|---|
|  | 300 | expression or a list of polynomial expressions (a list of expressions | 
|---|
|  | 301 | marked by prepending keyword :[ to it) given in lisp prefix notation, | 
|---|
|  | 302 | in variables VARS, which should be a list of symbols. The result of | 
|---|
|  | 303 | the evaluation is a polynomial or a list of polynomials (marked by | 
|---|
|  | 304 | prepending symbol '[) in the internal alist form. This evaluator is | 
|---|
|  | 305 | used by the PARSE package to convert input from strings directly to | 
|---|
|  | 306 | internal form." | 
|---|
|  | 307 | (cond | 
|---|
|  | 308 | ((numberp expr) | 
|---|
|  | 309 | (unless (zerop expr) | 
|---|
|  | 310 | (list (cons (make-list (length vars) :initial-element 0) expr)))) | 
|---|
|  | 311 | ((or (symbolp expr) (not (eq (car expr) :[))) | 
|---|
|  | 312 | (poly-eval-1 expr vars order ring)) | 
|---|
|  | 313 | (t (cons '[ (mapcar #'(lambda (p) (poly-eval-1 p vars order ring)) (rest expr)))))) | 
|---|
|  | 314 |  | 
|---|
|  | 315 |  | 
|---|
|  | 316 | ;; Return the standard basis of the monomials in n variables | 
|---|
|  | 317 | (defun monom-basis (n &aux | 
|---|
|  | 318 | (basis | 
|---|
|  | 319 | (copy-tree | 
|---|
|  | 320 | (make-list n :initial-element | 
|---|
|  | 321 | (list (cons | 
|---|
|  | 322 | (make-list | 
|---|
|  | 323 | n | 
|---|
|  | 324 | :initial-element 0) | 
|---|
|  | 325 | 1)))))) | 
|---|
|  | 326 | "Generate a list of monomials ((1 0 ... 0) (0 1 0 ... 0) ... (0 0 ... 1) | 
|---|
|  | 327 | which correspond to linear monomials X1, X2, ... XN." | 
|---|
|  | 328 | (dotimes (i n basis) | 
|---|
|  | 329 | (setf (elt (caar (elt basis i)) i) 1))) | 
|---|