close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/parse.lisp@ 1031

Last change on this file since 1031 was 1031, checked in by Marek Rychlik, 9 years ago

* empty log message *

File size: 12.9 KB
RevLine 
[645]1;;; -*- Mode: Lisp; Syntax: Common-Lisp; Package: Grobner; Base: 10 -*-
2
3;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
4;;;
5;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
6;;;
7;;; This program is free software; you can redistribute it and/or modify
8;;; it under the terms of the GNU General Public License as published by
9;;; the Free Software Foundation; either version 2 of the License, or
10;;; (at your option) any later version.
11;;;
12;;; This program is distributed in the hope that it will be useful,
13;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
14;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15;;; GNU General Public License for more details.
16;;;
17;;; You should have received a copy of the GNU General Public License
18;;; along with this program; if not, write to the Free Software
19;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20;;;
21;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
22
[646]23;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
24;;
[648]25;; Parser of infix notation. This package enables input
[650]26;; of polynomials in human-readable notation outside of Maxima,
[648]27;; which is very useful for debugging.
[646]28;;
29;; NOTE: This package is adapted from CGBLisp.
30;;
31;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
32
[645]33(defpackage "PARSE"
[1017]34 (:use :cl :order :ring-and-order :monomial :term :polynomial :ring)
[645]35 (:export "PARSE PARSE-TO-ALIST" "PARSE-STRING-TO-ALIST"
36 "PARSE-TO-SORTED-ALIST" "PARSE-STRING-TO-SORTED-ALIST" "^" "["
[865]37 "POLY-EVAL"
[823]38 ))
[645]39
40(in-package "PARSE")
41
42(proclaim '(optimize (speed 0) (space 0) (safety 3) (debug 3)))
43
44;; The function PARSE yields the representations as above. The two functions
45;; PARSE-TO-ALIST and PARSE-STRING-TO-ALIST parse polynomials to the alist
46;; representations. For example
47;;
48;; >(parse)x^2-y^2+(-4/3)*u^2*w^3-5 --->
49;; (+ (* 1 (^ X 2)) (* -1 (^ Y 2)) (* -4/3 (^ U 2) (^ W 3)) (* -5))
50;;
51;; >(parse-to-alist '(x y u w))x^2-y^2+(-4/3)*u^2*w^3-5 --->
52;; (((0 0 2 3) . -4/3) ((0 2 0 0) . -1) ((2 0 0 0) . 1) ((0 0 0 0) . -5))
53;;
54;; >(parse-string-to-alist "x^2-y^2+(-4/3)*u^2*w^3-5" '(x y u w)) --->
55;; (((0 0 2 3) . -4/3) ((0 2 0 0) . -1) ((2 0 0 0) . 1) ((0 0 0 0) . -5))
56;;
57;; >(parse-string-to-alist "[x^2-y^2+(-4/3)*u^2*w^3-5,y]" '(x y u w))
58;; ([ (((0 0 2 3) . -4/3) ((0 2 0 0) . -1) ((2 0 0 0) . 1)
59;; ((0 0 0 0) . -5))
60;; (((0 1 0 0) . 1)))
61;; The functions PARSE-TO-SORTED-ALIST and PARSE-STRING-TO-SORTED-ALIST
62;; in addition sort terms by the predicate defined in the ORDER package
63;; For instance:
64;; >(parse-to-sorted-alist '(x y u w))x^2-y^2+(-4/3)*u^2*w^3-5
65;; (((2 0 0 0) . 1) ((0 2 0 0) . -1) ((0 0 2 3) . -4/3) ((0 0 0 0) . -5))
66;; >(parse-to-sorted-alist '(x y u w) t #'grlex>)x^2-y^2+(-4/3)*u^2*w^3-5
67;; (((0 0 2 3) . -4/3) ((2 0 0 0) . 1) ((0 2 0 0) . -1) ((0 0 0 0) . -5))
68
69;;(eval-when (compile)
70;; (proclaim '(optimize safety)))
71
72(defun convert-number (number-or-poly n)
73 "Returns NUMBER-OR-POLY, if it is a polynomial. If it is a number,
74it converts it to the constant monomial in N variables. If the result
75is a number then convert it to a polynomial in N variables."
76 (if (numberp number-or-poly)
[1005]77 (make-poly-from-termlist (list (make-term (make-monom :dimension n) number-or-poly)))
[1004]78 number-or-poly))
[645]79
[1005]80(defun $poly+ (ring-and-order p q n)
[645]81 "Add two polynomials P and Q, where each polynomial is either a
82numeric constant or a polynomial in internal representation. If the
83result is a number then convert it to a polynomial in N variables."
[1005]84 (poly-add ring-and-order (convert-number p n) (convert-number q n)))
[645]85
[1005]86(defun $poly- (ring-and-order p q n)
[645]87 "Subtract two polynomials P and Q, where each polynomial is either a
88numeric constant or a polynomial in internal representation. If the
89result is a number then convert it to a polynomial in N variables."
[1005]90 (poly-sub ring-and-order (convert-number p n) (convert-number q n)))
[645]91
[1005]92(defun $minus-poly (ring p n)
[645]93 "Negation of P is a polynomial is either a numeric constant or a
94polynomial in internal representation. If the result is a number then
95convert it to a polynomial in N variables."
[1005]96 (poly-uminus ring (convert-number p n)))
[645]97
[1006]98(defun $poly* (ring-and-order p q n)
[645]99 "Multiply two polynomials P and Q, where each polynomial is either a
100numeric constant or a polynomial in internal representation. If the
101result is a number then convert it to a polynomial in N variables."
[1007]102 (poly-mul ring-and-order (convert-number p n) (convert-number q n)))
[645]103
[1007]104(defun $poly/ (ring p q)
[645]105 "Divide a polynomials P which is either a numeric constant or a
106polynomial in internal representation, by a number Q."
107 (if (numberp p)
108 (common-lisp:/ p q)
[1007]109 (scalar-times-poly ring (common-lisp:/ q) p)))
[645]110
[1008]111(defun $poly-expt (ring-and-order p l n)
[645]112 "Raise polynomial P, which is a polynomial in internal
113representation or a numeric constant, to power L. If P is a number,
114convert the result to a polynomial in N variables."
[1007]115 (poly-expt ring-and-order (convert-number p n) l))
[645]116
117(defun parse (&optional stream)
[1030]118 "Parser of infix expressions with integer/rational coefficients
[645]119The parser will recognize two kinds of polynomial expressions:
120
121- polynomials in fully expanded forms with coefficients
122 written in front of symbolic expressions; constants can be optionally
123 enclosed in (); for example, the infix form
124 X^2-Y^2+(-4/3)*U^2*W^3-5
125 parses to
126 (+ (- (EXPT X 2) (EXPT Y 2)) (* (- (/ 4 3)) (EXPT U 2) (EXPT W 3)) (- 5))
127
128- lists of polynomials; for example
129 [X-Y, X^2+3*Z]
130 parses to
131 (:[ (- X Y) (+ (EXPT X 2) (* 3 Z)))
132 where the first symbol [ marks a list of polynomials.
133
134-other infix expressions, for example
135 [(X-Y)*(X+Y)/Z,(X+1)^2]
136parses to:
137 (:[ (/ (* (- X Y) (+ X Y)) Z) (EXPT (+ X 1) 2))
138Currently this function is implemented using M. Kantrowitz's INFIX package."
139 (read-from-string
140 (concatenate 'string
141 "#I("
142 (with-output-to-string (s)
143 (loop
144 (multiple-value-bind (line eof)
145 (read-line stream t)
146 (format s "~A" line)
147 (when eof (return)))))
148 ")")))
149
150;; Translate output from parse to a pure list form
151;; assuming variables are VARS
152
153(defun alist-form (plist vars)
154 "Translates an expression PLIST, which should be a list of polynomials
155in variables VARS, to an alist representation of a polynomial.
156It returns the alist. See also PARSE-TO-ALIST."
157 (cond
158 ((endp plist) nil)
159 ((eql (first plist) '[)
160 (cons '[ (mapcar #'(lambda (x) (alist-form x vars)) (rest plist))))
161 (t
162 (assert (eql (car plist) '+))
163 (alist-form-1 (rest plist) vars))))
164
165(defun alist-form-1 (p vars
166 &aux (ht (make-hash-table
167 :test #'equal :size 16))
168 stack)
169 (dolist (term p)
170 (assert (eql (car term) '*))
171 (incf (gethash (powers (cddr term) vars) ht 0) (second term)))
172 (maphash #'(lambda (key value) (unless (zerop value)
173 (push (cons key value) stack))) ht)
174 stack)
175
176(defun powers (monom vars
177 &aux (tab (pairlis vars (make-list (length vars)
178 :initial-element 0))))
179 (dolist (e monom (mapcar #'(lambda (v) (cdr (assoc v tab))) vars))
180 (assert (equal (first e) '^))
181 (assert (integerp (third e)))
182 (assert (= (length e) 3))
183 (let ((x (assoc (second e) tab)))
184 (if (null x) (error "Variable ~a not in the list of variables."
185 (second e))
186 (incf (cdr x) (third e))))))
187
188
189;; New implementation based on the INFIX package of Mark Kantorowitz
190(defun parse-to-alist (vars &optional stream)
191 "Parse an expression already in prefix form to an association list form
192according to the internal CGBlisp polynomial syntax: a polynomial is an
193alist of pairs (MONOM . COEFFICIENT). For example:
194 (WITH-INPUT-FROM-STRING (S \"X^2-Y^2+(-4/3)*U^2*W^3-5\")
195 (PARSE-TO-ALIST '(X Y U W) S))
196evaluates to
197(((0 0 2 3) . -4/3) ((0 2 0 0) . -1) ((2 0 0 0) . 1) ((0 0 0 0) . -5))"
198 (poly-eval (parse stream) vars))
199
200
201(defun parse-string-to-alist (str vars)
202 "Parse string STR and return a polynomial as a sorted association
203list of pairs (MONOM . COEFFICIENT). For example:
204(parse-string-to-alist \"[x^2-y^2+(-4/3)*u^2*w^3-5,y]\" '(x y u w))
205 ([ (((0 0 2 3) . -4/3) ((0 2 0 0) . -1) ((2 0 0 0) . 1)
206 ((0 0 0 0) . -5))
207 (((0 1 0 0) . 1)))
208The functions PARSE-TO-SORTED-ALIST and PARSE-STRING-TO-SORTED-ALIST
209sort terms by the predicate defined in the ORDER package."
210 (with-input-from-string (stream str)
211 (parse-to-alist vars stream)))
212
213
214(defun parse-to-sorted-alist (vars &optional (order #'lex>) (stream t))
215 "Parses streasm STREAM and returns a polynomial represented as
216a sorted alist. For example:
217(WITH-INPUT-FROM-STRING (S \"X^2-Y^2+(-4/3)*U^2*W^3-5\")
218 (PARSE-TO-SORTED-ALIST '(X Y U W) S))
219returns
220(((2 0 0 0) . 1) ((0 2 0 0) . -1) ((0 0 2 3) . -4/3) ((0 0 0 0) . -5))
221and
222(WITH-INPUT-FROM-STRING (S \"X^2-Y^2+(-4/3)*U^2*W^3-5\")
223 (PARSE-TO-SORTED-ALIST '(X Y U W) T #'GRLEX>) S)
224returns
225(((0 0 2 3) . -4/3) ((2 0 0 0) . 1) ((0 2 0 0) . -1) ((0 0 0 0) . -5))"
226 (sort-poly (parse-to-alist vars stream) order))
227
228(defun parse-string-to-sorted-alist (str vars &optional (order #'lex>))
229 "Parse a string to a sorted alist form, the internal representation
230of polynomials used by our system."
231 (with-input-from-string (stream str)
232 (parse-to-sorted-alist vars order stream)))
233
234(defun sort-poly-1 (p order)
235 "Sort the terms of a single polynomial P using an admissible monomial order ORDER.
236Returns the sorted polynomial. Destructively modifies P."
237 (sort p order :key #'first))
238
239;; Sort a polynomial or polynomial list
240(defun sort-poly (poly-or-poly-list &optional (order #'lex>))
241 "Sort POLY-OR-POLY-LIST, which could be either a single polynomial
242or a list of polynomials in internal alist representation, using
243admissible monomial order ORDER. Each polynomial is sorted using
244SORT-POLY-1."
245 (cond
246 ((eql poly-or-poly-list :syntax-error) nil)
247 ((null poly-or-poly-list) nil)
248 ((eql (car poly-or-poly-list) '[)
249 (cons '[ (mapcar #'(lambda (p) (sort-poly-1 p order))
250 (rest poly-or-poly-list))))
251 (t (sort-poly-1 poly-or-poly-list order))))
252
[1020]253;; Return the standard basis of the monomials in n variables
254(defun variable-basis (ring n &aux (basis (make-list n)))
[1021]255 "Generate a list of polynomials X[i], i=0,1,...,N-1."
[1020]256 (dotimes (i n basis)
257 (setf (elt basis i) (make-variable ring n i))))
258
[1009]259(defun poly-eval-1 (ring-and-order expr vars
[645]260 &aux
[1009]261 (ring (ro-ring ring-and-order))
262 (n (length vars))
[1019]263 (basis (variable-basis ring (length vars))))
[645]264 "Evaluate an expression EXPR as polynomial by substituting operators
265+ - * expt with corresponding polynomial operators and variables VARS
266with monomials (1 0 ... 0), (0 1 ... 0) etc. We use special versions
267of binary operators $poly+, $poly-, $minus-poly, $poly* and $poly-expt
268which work like the corresponding functions in the POLY package, but
269accept scalars as arguments as well."
270 (cond
271 ((numberp expr)
272 (cond
273 ((zerop expr) NIL)
[1009]274 (t (make-poly-from-termlist (list (make-monom :dimension n) expr)))))
[645]275 ((symbolp expr)
[1018]276 (nth (position expr vars) basis))
[645]277 ((consp expr)
278 (case (car expr)
279 (expt
280 (if (= (length expr) 3)
[1017]281 ($poly-expt ring-and-order
[1016]282 (poly-eval-1 ring-and-order (cadr expr) vars)
[645]283 (caddr expr)
[1009]284 n)
[645]285 (error "Too many arguments to EXPT")))
286 (/
287 (if (and (= (length expr) 3)
288 (numberp (caddr expr)))
[1009]289 ($poly/ ring (cadr expr) (caddr expr))
[645]290 (error "The second argument to / must be a number")))
291 (otherwise
292 (let ((r (mapcar
[1010]293 #'(lambda (e) (poly-eval-1 ring-and-order e vars))
[645]294 (cdr expr))))
295 (ecase (car expr)
[1010]296 (+ (reduce #'(lambda (p q) ($poly+ ring-and-order p q n)) r))
[645]297 (-
298 (if (endp (cdr r))
[1010]299 ($minus-poly ring (car r) n)
300 ($poly- ring-and-order
301 (car r)
302 (reduce #'(lambda (p q) ($poly+ ring-and-order p q n)) (cdr r))
303 n)))
[645]304 (*
[1010]305 (reduce #'(lambda (p q) ($poly* ring-and-order p q n)) r))
[645]306 )))))))
307
308
[1010]309(defun poly-eval (expr vars
[1015]310 &optional (order #'lex>) (ring *ring-of-integers*)
[1010]311 &aux
[1022]312 (ring-and-order (make-ring-and-order :ring ring :order order)))
[645]313 "Evaluate an expression EXPR, which should be a polynomial
314expression or a list of polynomial expressions (a list of expressions
315marked by prepending keyword :[ to it) given in lisp prefix notation,
316in variables VARS, which should be a list of symbols. The result of
317the evaluation is a polynomial or a list of polynomials (marked by
318prepending symbol '[) in the internal alist form. This evaluator is
319used by the PARSE package to convert input from strings directly to
320internal form."
321 (cond
322 ((numberp expr)
323 (unless (zerop expr)
[1010]324 (make-poly-from-termlist
325 (list (make-term (make-monom :dimension (length vars)) expr)))))
[645]326 ((or (symbolp expr) (not (eq (car expr) :[)))
[1031]327 (poly-eval-1 expr vars ring order))
[1010]328 (t (cons '[ (mapcar #'(lambda (p) (poly-eval-1 ring-and-order p vars)) (rest expr))))))
[645]329
330
Note: See TracBrowser for help on using the repository browser.