close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/order.lisp@ 2082

Last change on this file since 2082 was 1938, checked in by Marek Rychlik, 10 years ago

* empty log message *

File size: 7.1 KB
Line 
1;;; -*- Mode: Lisp -*-
2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
22;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
23;;
24;; Implementations of various admissible monomial orders
25;; Implementation of order-making functions/closures.
26;;
27;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
28
29(defpackage "ORDER"
30 (:use :cl :monom)
31 (:export "LEX>"
32 "GRLEX>"
33 "REVLEX>"
34 "GREVLEX>"
35 "INVLEX>"
36 "REVERSE-MONOMIAL-ORDER"
37 "MAKE-ELIMINATION-ORDER-FACTORY"))
38
39(in-package :order)
40
41(proclaim '(optimize (speed 3) (space 0) (safety 0) (debug 0)))
42
43;; pure lexicographic
44(defun lex> (p q &optional (start 0) (end (monom-dimension p)))
45 "Return T if P>Q with respect to lexicographic order, otherwise NIL.
46The second returned value is T if P=Q, otherwise it is NIL."
47 (declare (type monom p q) (type fixnum start end))
48 (do ((i start (1+ i)))
49 ((>= i end) (values nil t))
50 (cond
51 ((> (monom-elt p i) (monom-elt q i))
52 (return-from lex> (values t nil)))
53 ((< (monom-elt p i) (monom-elt q i))
54 (return-from lex> (values nil nil))))))
55
56;; total degree order , ties broken by lexicographic
57(defun grlex> (p q &optional (start 0) (end (monom-dimension p)))
58 "Return T if P>Q with respect to graded lexicographic order, otherwise NIL.
59The second returned value is T if P=Q, otherwise it is NIL."
60 (declare (type monom p q) (type fixnum start end))
61 (let ((d1 (monom-total-degree p start end))
62 (d2 (monom-total-degree q start end)))
63 (declare (type fixnum d1 d2))
64 (cond
65 ((> d1 d2) (values t nil))
66 ((< d1 d2) (values nil nil))
67 (t
68 (lex> p q start end)))))
69
70
71;; reverse lexicographic
72(defun revlex> (p q &optional (start 0) (end (monom-dimension p)))
73 "Return T if P>Q with respect to reverse lexicographic order, NIL
74otherwise. The second returned value is T if P=Q, otherwise it is
75NIL. This is not and admissible monomial order because some sets do
76not have a minimal element. This order is useful in constructing other
77orders."
78 (declare (type monom p q) (type fixnum start end))
79 (do ((i (1- end) (1- i)))
80 ((< i start) (values nil t))
81 (declare (type fixnum i))
82 (cond
83 ((< (monom-elt p i) (monom-elt q i))
84 (return-from revlex> (values t nil)))
85 ((> (monom-elt p i) (monom-elt q i))
86 (return-from revlex> (values nil nil))))))
87
88
89;; total degree, ties broken by reverse lexicographic
90(defun grevlex> (p q &optional (start 0) (end (monom-dimension p)))
91 "Return T if P>Q with respect to graded reverse lexicographic order,
92NIL otherwise. The second returned value is T if P=Q, otherwise it is NIL."
93 (declare (type monom p q) (type fixnum start end))
94 (let ((d1 (monom-total-degree p start end))
95 (d2 (monom-total-degree q start end)))
96 (declare (type fixnum d1 d2))
97 (cond
98 ((> d1 d2) (values t nil))
99 ((< d1 d2) (values nil nil))
100 (t
101 (revlex> p q start end)))))
102
103(defun invlex> (p q &optional (start 0) (end (monom-dimension p)))
104 "Return T if P>Q with respect to inverse lexicographic order, NIL otherwise
105The second returned value is T if P=Q, otherwise it is NIL."
106 (declare (type monom p q) (type fixnum start end))
107 (do ((i (1- end) (1- i)))
108 ((< i start) (values nil t))
109 (declare (type fixnum i))
110 (cond
111 ((> (monom-elt p i) (monom-elt q i))
112 (return-from invlex> (values t nil)))
113 ((< (monom-elt p i) (monom-elt q i))
114 (return-from invlex> (values nil nil))))))
115
116
117(defun reverse-monomial-order (order)
118 "Create the inverse monomial order to the given monomial order ORDER."
119 #'(lambda (p q &optional (start 0) (end (monom-dimension q)))
120 (declare (type monom p q) (type fixnum start end))
121 (funcall order q p start end)))
122
123;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
124;;
125;; Order making functions
126;;
127;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
128
129;; This returns a closure with the same signature
130;; as all orders such as #'LEX>.
131(defun make-elimination-order-factory-1 (&optional (secondary-elimination-order #'lex>))
132 "It constructs an elimination order used for the 1-st elimination ideal,
133i.e. for eliminating the first variable. Thus, the order compares the degrees of the
134first variable in P and Q first, with ties broken by SECONDARY-ELIMINATION-ORDER."
135 #'(lambda (p q &optional (start 0) (end (monom-dimension p)))
136 (declare (type monom p q) (type fixnum start end))
137 (cond
138 ((> (monom-elt p start) (monom-elt q start))
139 (values t nil))
140 ((< (monom-elt p start) (monom-elt q start))
141 (values nil nil))
142 (t
143 (funcall secondary-elimination-order p q (1+ start) end)))))
144
145;; This returns a closure which is called with an integer argument.
146;; The result is *another closure* with the same signature as all
147;; orders such as #'LEX>.
148(defun make-elimination-order-factory (&optional
149 (primary-elimination-order #'lex>)
150 (secondary-elimination-order #'lex>))
151 "Return a function with a single integer argument K. This should be
152the number of initial K variables X[0],X[1],...,X[K-1], which precede
153remaining variables. The call to the closure creates a predicate
154which compares monomials according to the K-th elimination order. The
155monomial orders PRIMARY-ELIMINATION-ORDER and
156SECONDARY-ELIMINATION-ORDER are used to compare the first K and the
157remaining variables, respectively, with ties broken by lexicographical
158order. That is, if PRIMARY-ELIMINATION-ORDER yields (VALUES NIL T),
159which indicates that the first K variables appear with identical
160powers, then the result is that of a call to
161SECONDARY-ELIMINATION-ORDER applied to the remaining variables
162X[K],X[K+1],..."
163 #'(lambda (k)
164 (cond
165 ((<= k 0)
166 (error "K must be at least 1"))
167 ((= k 1)
168 (make-elimination-order-factory-1 secondary-elimination-order))
169 (t
170 #'(lambda (p q &optional (start 0) (end (monom-dimension p)))
171 (declare (type monom p q) (type fixnum start end))
172 (multiple-value-bind (primary equal)
173 (funcall primary-elimination-order p q start k)
174 (if equal
175 (funcall secondary-elimination-order p q k end)
176 (values primary nil))))))))
177
Note: See TracBrowser for help on using the repository browser.