;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;; ;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik ;;; ;;; This program is free software; you can redistribute it and/or modify ;;; it under the terms of the GNU General Public License as published by ;;; the Free Software Foundation; either version 2 of the License, or ;;; (at your option) any later version. ;;; ;;; This program is distributed in the hope that it will be useful, ;;; but WITHOUT ANY WARRANTY; without even the implied warranty of ;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ;;; GNU General Public License for more details. ;;; ;;; You should have received a copy of the GNU General Public License ;;; along with this program; if not, write to the Free Software ;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. ;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (defpackage "ORDER" (:use :cl :monomial) (:export "LEX>" "GRLEX>" "REVLEX>" "GREVLEX>" "INVLEX>" "MONOMIAL-ORDER" "REVERSE-MONOMIAL-ORDER" "*PRIMARY-ELIMINATION-ORDER*" "*SECONDARY-ELIMINATION-ORDER*" "*ELIMINATION-ORDER*" "ELIMINATION-ORDER" "ELIMINATION-ORDER-1")) (in-package :order) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; ;; Implementations of various admissible monomial orders ;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; pure lexicographic (defun lex> (p q &optional (start 0) (end (monom-dimension p))) "Return T if P>Q with respect to lexicographic order, otherwise NIL. The second returned value is T if P=Q, otherwise it is NIL." (declare (type monom p q) (type fixnum start end)) (do ((i start (1+ i))) ((>= i end) (values nil t)) (declare (type fixnum i)) (cond ((> (monom-elt p i) (monom-elt q i)) (return-from lex> (values t nil))) ((< (monom-elt p i) (monom-elt q i)) (return-from lex> (values nil nil)))))) ;; total degree order , ties broken by lexicographic (defun grlex> (p q &optional (start 0) (end (monom-dimension p))) "Return T if P>Q with respect to graded lexicographic order, otherwise NIL. The second returned value is T if P=Q, otherwise it is NIL." (declare (type monom p q) (type fixnum start end)) (let ((d1 (monom-total-degree p start end)) (d2 (monom-total-degree q start end))) (cond ((> d1 d2) (values t nil)) ((< d1 d2) (values nil nil)) (t (lex> p q start end))))) ;; reverse lexicographic (defun revlex> (p q &optional (start 0) (end (monom-dimension p))) "Return T if P>Q with respect to reverse lexicographic order, NIL otherwise. The second returned value is T if P=Q, otherwise it is NIL. This is not and admissible monomial order because some sets do not have a minimal element. This order is useful in constructing other orders." (declare (type monom p q) (type fixnum start end)) (do ((i (1- end) (1- i))) ((< i start) (values nil t)) (declare (type fixnum i)) (cond ((< (monom-elt p i) (monom-elt q i)) (return-from revlex> (values t nil))) ((> (monom-elt p i) (monom-elt q i)) (return-from revlex> (values nil nil)))))) ;; total degree, ties broken by reverse lexicographic (defun grevlex> (p q &optional (start 0) (end (monom-dimension p))) "Return T if P>Q with respect to graded reverse lexicographic order, NIL otherwise. The second returned value is T if P=Q, otherwise it is NIL." (declare (type monom p q) (type fixnum start end)) (let ((d1 (monom-total-degree p start end)) (d2 (monom-total-degree q start end))) (cond ((> d1 d2) (values t nil)) ((< d1 d2) (values nil nil)) (t (revlex> p q start end))))) (defun invlex> (p q &optional (start 0) (end (monom-dimension p))) "Return T if P>Q with respect to inverse lexicographic order, NIL otherwise The second returned value is T if P=Q, otherwise it is NIL." (declare (type monom p q) (type fixnum start end)) (do ((i (1- end) (1- i))) ((< i start) (values nil t)) (declare (type fixnum i)) (cond ((> (monom-elt p i) (monom-elt q i)) (return-from invlex> (values t nil))) ((< (monom-elt p i) (monom-elt q i)) (return-from invlex> (values nil nil)))))) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; ;; Some globally-defined variables holding monomial orders ;; and related macros/functions. ;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (defvar *monomial-order* #'lex> "Default order for monomial comparisons. This global variable holds the order which is in effect when performing polynomial arithmetic. The global order is called by the macro MONOMIAL-ORDER, which is somewhat more elegant than FUNCALL.") (defmacro monomial-order (x y) "Calls the global monomial order function, held by *MONOMIAL-ORDER*." `(funcall *monomial-order* ,x ,y)) (defmacro reverse-monomial-order (x y) "Calls the inverse monomial order to the global monomial order function, held by *MONOMIAL-ORDER*." `(monomial-order ,y ,x)) (defvar *primary-elimination-order* #'lex>) (defvar *secondary-elimination-order* #'lex>) (defvar *elimination-order* nil "Default elimination order used in elimination-based functions. If not NIL, it is assumed to be a proper elimination order. If NIL, we will construct an elimination order using the values of *PRIMARY-ELIMINATION-ORDER* and *SECONDARY-ELIMINATION-ORDER*.") ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; ;; Order making functions ;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (defun elimination-order (k) "Return a predicate which compares monomials according to the K-th elimination order. Two variables *PRIMARY-ELIMINATION-ORDER* and *SECONDARY-ELIMINATION-ORDER* control the behavior on the first K and the remaining variables, respectively." (declare (type fixnum k)) #'(lambda (p q &optional (start 0) (end (monom-dimension p))) (declare (type monom p q) (type fixnum start end)) (multiple-value-bind (primary equal) (funcall *primary-elimination-order* p q start k) (if equal (funcall *secondary-elimination-order* p q k end) (values primary nil))))) (defun elimination-order-1 (p q &optional (start 0) (end (monom-dimension p))) "Equivalent to the function returned by the call to (ELIMINATION-ORDER 1)." (declare (type monom p q) (type fixnum start end)) (cond ((> (monom-elt p start) (monom-elt q start)) (values t nil)) ((< (monom-elt p start) (monom-elt q start)) (values nil nil)) (t (funcall *secondary-elimination-order* p q (1+ start) end))))