;;; -*- Mode: Lisp -*- ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;; ;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik ;;; ;;; This program is free software; you can redistribute it and/or modify ;;; it under the terms of the GNU General Public License as published by ;;; the Free Software Foundation; either version 2 of the License, or ;;; (at your option) any later version. ;;; ;;; This program is distributed in the hope that it will be useful, ;;; but WITHOUT ANY WARRANTY; without even the implied warranty of ;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ;;; GNU General Public License for more details. ;;; ;;; You should have received a copy of the GNU General Public License ;;; along with this program; if not, write to the Free Software ;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. ;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; ;; Implementations of various admissible monomial orders ;; Implementation of order-making functions/closures. ;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (defpackage "ORDER" (:use :cl :monom) (:export "LEX>" "GRLEX>" "REVLEX>" "GREVLEX>" "INVLEX>" "REVERSE-MONOMIAL-ORDER" "MAKE-ELIMINATION-ORDER-FACTORY")) (in-package :order) ;; pure lexicographic (defun lex> (p q &optional (start 0) (end (monom-dimension p))) "Return T if P>Q with respect to lexicographic order, otherwise NIL. The second returned value is T if P=Q, otherwise it is NIL." (declare (type monom p q) (type fixnum start end)) (do ((i start (1+ i))) ((>= i end) (values nil t)) (cond ((> (monom-elt p i) (monom-elt q i)) (return-from lex> (values t nil))) ((< (monom-elt p i) (monom-elt q i)) (return-from lex> (values nil nil)))))) ;; total degree order , ties broken by lexicographic (defun grlex> (p q &optional (start 0) (end (monom-dimension p))) "Return T if P>Q with respect to graded lexicographic order, otherwise NIL. The second returned value is T if P=Q, otherwise it is NIL." (declare (type monom p q) (type fixnum start end)) (let ((d1 (monom-total-degree p start end)) (d2 (monom-total-degree q start end))) (cond ((> d1 d2) (values t nil)) ((< d1 d2) (values nil nil)) (t (lex> p q start end))))) ;; reverse lexicographic (defun revlex> (p q &optional (start 0) (end (monom-dimension p))) "Return T if P>Q with respect to reverse lexicographic order, NIL otherwise. The second returned value is T if P=Q, otherwise it is NIL. This is not and admissible monomial order because some sets do not have a minimal element. This order is useful in constructing other orders." (do ((i (1- end) (1- i))) ((< i start) (values nil t)) (cond ((< (monom-elt p i) (monom-elt q i)) (return-from revlex> (values t nil))) ((> (monom-elt p i) (monom-elt q i)) (return-from revlex> (values nil nil)))))) ;; total degree, ties broken by reverse lexicographic (defun grevlex> (p q &optional (start 0) (end (monom-dimension p))) "Return T if P>Q with respect to graded reverse lexicographic order, NIL otherwise. The second returned value is T if P=Q, otherwise it is NIL." (declare (type monom p q) (type fixnum start end)) (let ((d1 (monom-total-degree p start end)) (d2 (monom-total-degree q start end))) (cond ((> d1 d2) (values t nil)) ((< d1 d2) (values nil nil)) (t (revlex> p q start end))))) (defun invlex> (p q &optional (start 0) (end (monom-dimension p))) "Return T if P>Q with respect to inverse lexicographic order, NIL otherwise The second returned value is T if P=Q, otherwise it is NIL." (declare (type monom p q) (type fixnum start end)) (do ((i (1- end) (1- i))) ((< i start) (values nil t)) (cond ((> (monom-elt p i) (monom-elt q i)) (return-from invlex> (values t nil))) ((< (monom-elt p i) (monom-elt q i)) (return-from invlex> (values nil nil)))))) (defun reverse-monomial-order (order) "Create the inverse monomial order to the given monomial order ORDER." #'(lambda (p q &optional (start 0) (end (monom-dimension q))) (declare (type monom p q) (type fixnum start end)) (funcall order q p start end))) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; ;; Order making functions ;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; This returns a closure with the same signature ;; as all orders such as #'LEX>. (defun make-elimination-order-factory-1 (&optional (secondary-elimination-order #'lex>)) "It constructs an elimination order used for the 1-st elimination ideal, i.e. for eliminating the first variable. Thus, the order compares the degrees of the first variable in P and Q first, with ties broken by SECONDARY-ELIMINATION-ORDER." #'(lambda (p q &optional (start 0) (end (monom-dimension p))) (declare (type monom p q) (type fixnum start end)) (cond ((> (monom-elt p start) (monom-elt q start)) (values t nil)) ((< (monom-elt p start) (monom-elt q start)) (values nil nil)) (t (funcall secondary-elimination-order p q (1+ start) end))))) ;; This returns a closure which is called with an integer argument. ;; The result is *another closure* with the same signature as all ;; orders such as #'LEX>. (defun make-elimination-order-factory (&optional (primary-elimination-order #'lex>) (secondary-elimination-order #'lex>)) "Return a function with a single integer argument K. This should be the number of initial K variables X[0],X[1],...,X[K-1], which precede remaining variables. The call to the closure creates a predicate which compares monomials according to the K-th elimination order. The monomial orders PRIMARY-ELIMINATION-ORDER and SECONDARY-ELIMINATION-ORDER are used to compare the first K and the remaining variables, respectively, with ties broken by lexicographical order. That is, if PRIMARY-ELIMINATION-ORDER yields (VALUES NIL T), which indicates that the first K variables appear with identical powers, then the result is that of a call to SECONDARY-ELIMINATION-ORDER applied to the remaining variables X[K],X[K+1],..." #'(lambda (k) (cond ((<= k 0) (error "K must be at least 1")) ((= k 1) (make-elimination-order-factory-1 secondary-elimination-order)) (t #'(lambda (p q &optional (start 0) (end (monom-dimension p))) (declare (type monom p q) (type fixnum start end)) (multiple-value-bind (primary equal) (funcall primary-elimination-order p q start k) (if equal (funcall secondary-elimination-order p q k end) (values primary nil))))))))