| 1 | ;;; -*-  Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- | 
|---|
| 2 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
| 3 | ;;; | 
|---|
| 4 | ;;;  Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu> | 
|---|
| 5 | ;;; | 
|---|
| 6 | ;;;  This program is free software; you can redistribute it and/or modify | 
|---|
| 7 | ;;;  it under the terms of the GNU General Public License as published by | 
|---|
| 8 | ;;;  the Free Software Foundation; either version 2 of the License, or | 
|---|
| 9 | ;;;  (at your option) any later version. | 
|---|
| 10 | ;;; | 
|---|
| 11 | ;;;  This program is distributed in the hope that it will be useful, | 
|---|
| 12 | ;;;  but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|---|
| 13 | ;;;  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|---|
| 14 | ;;;  GNU General Public License for more details. | 
|---|
| 15 | ;;; | 
|---|
| 16 | ;;;  You should have received a copy of the GNU General Public License | 
|---|
| 17 | ;;;  along with this program; if not, write to the Free Software | 
|---|
| 18 | ;;;  Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | 
|---|
| 19 | ;;; | 
|---|
| 20 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
| 21 |  | 
|---|
| 22 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
| 23 | ;; | 
|---|
| 24 | ;; Implementations of various admissible monomial orders | 
|---|
| 25 | ;; Implementation of order-making functions/closures. | 
|---|
| 26 | ;; | 
|---|
| 27 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
| 28 |  | 
|---|
| 29 | (defpackage "ORDER" | 
|---|
| 30 | (:use :cl :monomial) | 
|---|
| 31 | (:export "LEX>" | 
|---|
| 32 | "GRLEX>" | 
|---|
| 33 | "REVLEX>" | 
|---|
| 34 | "GREVLEX>" | 
|---|
| 35 | "INVLEX>" | 
|---|
| 36 | "REVERSE-MONOMIAL-ORDER" | 
|---|
| 37 | "MAKE-ELIMINATION-ORDER-MAKER")) | 
|---|
| 38 |  | 
|---|
| 39 | (in-package :order) | 
|---|
| 40 |  | 
|---|
| 41 | ;; pure lexicographic | 
|---|
| 42 | (defun lex> (p q &optional (start 0) (end (monom-dimension  p))) | 
|---|
| 43 | "Return T if P>Q with respect to lexicographic order, otherwise NIL. | 
|---|
| 44 | The second returned value is T if P=Q, otherwise it is NIL." | 
|---|
| 45 | (do ((i start (1+ i))) | 
|---|
| 46 | ((>= i end) (values nil t)) | 
|---|
| 47 | (cond | 
|---|
| 48 | ((> (monom-elt p i) (monom-elt q i)) | 
|---|
| 49 | (return-from lex> (values t nil))) | 
|---|
| 50 | ((< (monom-elt p i) (monom-elt q i)) | 
|---|
| 51 | (return-from lex> (values nil nil)))))) | 
|---|
| 52 |  | 
|---|
| 53 | ;; total degree order , ties broken by lexicographic | 
|---|
| 54 | (defun grlex> (p q &optional (start 0) (end (monom-dimension  p))) | 
|---|
| 55 | "Return T if P>Q with respect to graded lexicographic order, otherwise NIL. | 
|---|
| 56 | The second returned value is T if P=Q, otherwise it is NIL." | 
|---|
| 57 | (let ((d1 (monom-total-degree p start end)) | 
|---|
| 58 | (d2 (monom-total-degree q start end))) | 
|---|
| 59 | (cond | 
|---|
| 60 | ((> d1 d2) (values t nil)) | 
|---|
| 61 | ((< d1 d2) (values nil nil)) | 
|---|
| 62 | (t | 
|---|
| 63 | (lex> p q start end))))) | 
|---|
| 64 |  | 
|---|
| 65 |  | 
|---|
| 66 | ;; reverse lexicographic | 
|---|
| 67 | (defun revlex> (p q &optional (start 0) (end (monom-dimension  p))) | 
|---|
| 68 | "Return T if P>Q with respect to reverse lexicographic order, NIL | 
|---|
| 69 | otherwise.  The second returned value is T if P=Q, otherwise it is | 
|---|
| 70 | NIL. This is not and admissible monomial order because some sets do | 
|---|
| 71 | not have a minimal element. This order is useful in constructing other | 
|---|
| 72 | orders." | 
|---|
| 73 | (do ((i (1- end) (1- i))) | 
|---|
| 74 | ((< i start) (values nil t)) | 
|---|
| 75 | (cond | 
|---|
| 76 | ((< (monom-elt p i) (monom-elt q i)) | 
|---|
| 77 | (return-from revlex> (values t nil))) | 
|---|
| 78 | ((> (monom-elt p i) (monom-elt q i)) | 
|---|
| 79 | (return-from revlex> (values nil nil)))))) | 
|---|
| 80 |  | 
|---|
| 81 |  | 
|---|
| 82 | ;; total degree, ties broken by reverse lexicographic | 
|---|
| 83 | (defun grevlex> (p q &optional (start 0) (end (monom-dimension  p))) | 
|---|
| 84 | "Return T if P>Q with respect to graded reverse lexicographic order, | 
|---|
| 85 | NIL otherwise. The second returned value is T if P=Q, otherwise it is NIL." | 
|---|
| 86 | (let ((d1 (monom-total-degree p start end)) | 
|---|
| 87 | (d2 (monom-total-degree q start end))) | 
|---|
| 88 | (cond | 
|---|
| 89 | ((> d1 d2) (values t nil)) | 
|---|
| 90 | ((< d1 d2) (values nil nil)) | 
|---|
| 91 | (t | 
|---|
| 92 | (revlex> p q start end))))) | 
|---|
| 93 |  | 
|---|
| 94 | (defun invlex> (p q &optional (start 0) (end (monom-dimension  p))) | 
|---|
| 95 | "Return T if P>Q with respect to inverse lexicographic order, NIL otherwise | 
|---|
| 96 | The second returned value is T if P=Q, otherwise it is NIL." | 
|---|
| 97 | (do ((i (1- end) (1- i))) | 
|---|
| 98 | ((< i start) (values nil t)) | 
|---|
| 99 | (cond | 
|---|
| 100 | ((> (monom-elt p i) (monom-elt q i)) | 
|---|
| 101 | (return-from invlex> (values t nil))) | 
|---|
| 102 | ((< (monom-elt p i) (monom-elt q i)) | 
|---|
| 103 | (return-from invlex> (values nil nil)))))) | 
|---|
| 104 |  | 
|---|
| 105 |  | 
|---|
| 106 | (defun reverse-monomial-order (order) | 
|---|
| 107 | "Create the inverse monomial order to the given monomial order ORDER." | 
|---|
| 108 | #'(lambda (x y) (funcall order y x))) | 
|---|
| 109 |  | 
|---|
| 110 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
| 111 | ;; | 
|---|
| 112 | ;; Order making functions | 
|---|
| 113 | ;; | 
|---|
| 114 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
| 115 |  | 
|---|
| 116 | ;; This returns a closure with the same signature | 
|---|
| 117 | ;; as all orders such as #'LEX>. | 
|---|
| 118 | (defun make-elimination-order-1 (secondary-elimination-order) | 
|---|
| 119 | "It constructs an elimination order used for the 1-st elimination ideal, | 
|---|
| 120 | i.e. for eliminating the first variable. Thus, the order compares the degrees of the | 
|---|
| 121 | first variable in P and Q first, with ties broken by SECONDARY-ELIMINATION-ORDER." | 
|---|
| 122 | #'(lambda (p q &optional (start 0) (end (monom-dimension p))) | 
|---|
| 123 | (cond | 
|---|
| 124 | ((> (monom-elt p start) (monom-elt q start)) | 
|---|
| 125 | (values t nil)) | 
|---|
| 126 | ((< (monom-elt p start) (monom-elt q start)) | 
|---|
| 127 | (values nil nil)) | 
|---|
| 128 | (t | 
|---|
| 129 | (funcall secondary-elimination-order p q (1+ start) end))))) | 
|---|
| 130 |  | 
|---|
| 131 | ;; This returns a closure which is called with an integer argument. | 
|---|
| 132 | ;; The result is a closure with the same signature as all orders such as #'LEX>. | 
|---|
| 133 | (defun make-elimination-order-maker (primary-elimination-order secondary-elimination-order) | 
|---|
| 134 | "Return a function with a single integer argument K. This should be | 
|---|
| 135 | the number of initial K variables X[0],X[1],...,X[K-1], which precede | 
|---|
| 136 | remaining variables.  The call to the closure creates a predicate | 
|---|
| 137 | which compares monomials according to the K-th elimination order. The | 
|---|
| 138 | monomial orders PRIMARY-ELIMINATION-ORDER and | 
|---|
| 139 | SECONDARY-ELIMINATION-ORDER are used to compare the first K and the | 
|---|
| 140 | remaining variables, respectively, with ties broken by lexicographical | 
|---|
| 141 | order. That is, if PRIMARY-ELIMINATION-ORDER yields (VALUES NIL T), | 
|---|
| 142 | which indicates that the first K variables appear with identical | 
|---|
| 143 | powers, then the result is that of a call to | 
|---|
| 144 | SECONDARY-ELIMINATION-ORDER applied to the remaining variables | 
|---|
| 145 | X[K],X[K+1],..." | 
|---|
| 146 | #'(lambda (k) | 
|---|
| 147 | (cond | 
|---|
| 148 | ((<= k 0) | 
|---|
| 149 | (error "K must be at least 1")) | 
|---|
| 150 | ((= k 1) | 
|---|
| 151 | (make-elimination-order-1 secondary-elimination-order)) | 
|---|
| 152 | (t | 
|---|
| 153 | #'(lambda (p q &optional (start 0) (end (monom-dimension  p))) | 
|---|
| 154 | (multiple-value-bind (primary equal) | 
|---|
| 155 | (funcall primary-elimination-order p q start k) | 
|---|
| 156 | (if equal | 
|---|
| 157 | (funcall secondary-elimination-order p q k end) | 
|---|
| 158 | (values primary nil)))))))) | 
|---|
| 159 |  | 
|---|