1 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
2 | ;;
|
---|
3 | ;; Implementations of various admissible monomial orders
|
---|
4 | ;;
|
---|
5 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
6 |
|
---|
7 | ;; pure lexicographic
|
---|
8 | (defun lex> (p q &optional (start 0) (end (monom-dimension p)))
|
---|
9 | "Return T if P>Q with respect to lexicographic order, otherwise NIL.
|
---|
10 | The second returned value is T if P=Q, otherwise it is NIL."
|
---|
11 | (declare (type monom p q) (type fixnum start end))
|
---|
12 | (do ((i start (1+ i)))
|
---|
13 | ((>= i end) (values nil t))
|
---|
14 | (declare (type fixnum i))
|
---|
15 | (cond
|
---|
16 | ((> (monom-elt p i) (monom-elt q i))
|
---|
17 | (return-from lex> (values t nil)))
|
---|
18 | ((< (monom-elt p i) (monom-elt q i))
|
---|
19 | (return-from lex> (values nil nil))))))
|
---|
20 |
|
---|
21 | ;; total degree order , ties broken by lexicographic
|
---|
22 | (defun grlex> (p q &optional (start 0) (end (monom-dimension p)))
|
---|
23 | "Return T if P>Q with respect to graded lexicographic order, otherwise NIL.
|
---|
24 | The second returned value is T if P=Q, otherwise it is NIL."
|
---|
25 | (declare (type monom p q) (type fixnum start end))
|
---|
26 | (let ((d1 (monom-total-degree p start end))
|
---|
27 | (d2 (monom-total-degree q start end)))
|
---|
28 | (cond
|
---|
29 | ((> d1 d2) (values t nil))
|
---|
30 | ((< d1 d2) (values nil nil))
|
---|
31 | (t
|
---|
32 | (lex> p q start end)))))
|
---|
33 |
|
---|
34 |
|
---|
35 | ;; total degree, ties broken by reverse lexicographic
|
---|
36 | (defun grevlex> (p q &optional (start 0) (end (monom-dimension p)))
|
---|
37 | "Return T if P>Q with respect to graded reverse lexicographic order,
|
---|
38 | NIL otherwise. The second returned value is T if P=Q, otherwise it is NIL."
|
---|
39 | (declare (type monom p q) (type fixnum start end))
|
---|
40 | (let ((d1 (monom-total-degree p start end))
|
---|
41 | (d2 (monom-total-degree q start end)))
|
---|
42 | (cond
|
---|
43 | ((> d1 d2) (values t nil))
|
---|
44 | ((< d1 d2) (values nil nil))
|
---|
45 | (t
|
---|
46 | (revlex> p q start end)))))
|
---|
47 |
|
---|
48 |
|
---|
49 | ;; reverse lexicographic
|
---|
50 | (defun revlex> (p q &optional (start 0) (end (monom-dimension p)))
|
---|
51 | "Return T if P>Q with respect to reverse lexicographic order, NIL
|
---|
52 | otherwise. The second returned value is T if P=Q, otherwise it is
|
---|
53 | NIL. This is not and admissible monomial order because some sets do
|
---|
54 | not have a minimal element. This order is useful in constructing other
|
---|
55 | orders."
|
---|
56 | (declare (type monom p q) (type fixnum start end))
|
---|
57 | (do ((i (1- end) (1- i)))
|
---|
58 | ((< i start) (values nil t))
|
---|
59 | (declare (type fixnum i))
|
---|
60 | (cond
|
---|
61 | ((< (monom-elt p i) (monom-elt q i))
|
---|
62 | (return-from revlex> (values t nil)))
|
---|
63 | ((> (monom-elt p i) (monom-elt q i))
|
---|
64 | (return-from revlex> (values nil nil))))))
|
---|
65 |
|
---|
66 |
|
---|
67 | (defun invlex> (p q &optional (start 0) (end (monom-dimension p)))
|
---|
68 | "Return T if P>Q with respect to inverse lexicographic order, NIL otherwise
|
---|
69 | The second returned value is T if P=Q, otherwise it is NIL."
|
---|
70 | (declare (type monom p q) (type fixnum start end))
|
---|
71 | (do ((i (1- end) (1- i)))
|
---|
72 | ((< i start) (values nil t))
|
---|
73 | (declare (type fixnum i))
|
---|
74 | (cond
|
---|
75 | ((> (monom-elt p i) (monom-elt q i))
|
---|
76 | (return-from invlex> (values t nil)))
|
---|
77 | ((< (monom-elt p i) (monom-elt q i))
|
---|
78 | (return-from invlex> (values nil nil))))))
|
---|