1 | ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*-
|
---|
2 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
3 | ;;;
|
---|
4 | ;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
|
---|
5 | ;;;
|
---|
6 | ;;; This program is free software; you can redistribute it and/or modify
|
---|
7 | ;;; it under the terms of the GNU General Public License as published by
|
---|
8 | ;;; the Free Software Foundation; either version 2 of the License, or
|
---|
9 | ;;; (at your option) any later version.
|
---|
10 | ;;;
|
---|
11 | ;;; This program is distributed in the hope that it will be useful,
|
---|
12 | ;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
13 | ;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
14 | ;;; GNU General Public License for more details.
|
---|
15 | ;;;
|
---|
16 | ;;; You should have received a copy of the GNU General Public License
|
---|
17 | ;;; along with this program; if not, write to the Free Software
|
---|
18 | ;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
---|
19 | ;;;
|
---|
20 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
21 |
|
---|
22 | (in-package :ngrobner)
|
---|
23 |
|
---|
24 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
25 | ;;
|
---|
26 | ;; Implementations of various admissible monomial orders
|
---|
27 | ;;
|
---|
28 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
29 |
|
---|
30 | ;; pure lexicographic
|
---|
31 | (defun lex> (p q &optional (start 0) (end (monom-dimension p)))
|
---|
32 | "Return T if P>Q with respect to lexicographic order, otherwise NIL.
|
---|
33 | The second returned value is T if P=Q, otherwise it is NIL."
|
---|
34 | (declare (type monom p q) (type fixnum start end))
|
---|
35 | (do ((i start (1+ i)))
|
---|
36 | ((>= i end) (values nil t))
|
---|
37 | (declare (type fixnum i))
|
---|
38 | (cond
|
---|
39 | ((> (monom-elt p i) (monom-elt q i))
|
---|
40 | (return-from lex> (values t nil)))
|
---|
41 | ((< (monom-elt p i) (monom-elt q i))
|
---|
42 | (return-from lex> (values nil nil))))))
|
---|
43 |
|
---|
44 | ;; total degree order , ties broken by lexicographic
|
---|
45 | (defun grlex> (p q &optional (start 0) (end (monom-dimension p)))
|
---|
46 | "Return T if P>Q with respect to graded lexicographic order, otherwise NIL.
|
---|
47 | The second returned value is T if P=Q, otherwise it is NIL."
|
---|
48 | (declare (type monom p q) (type fixnum start end))
|
---|
49 | (let ((d1 (monom-total-degree p start end))
|
---|
50 | (d2 (monom-total-degree q start end)))
|
---|
51 | (cond
|
---|
52 | ((> d1 d2) (values t nil))
|
---|
53 | ((< d1 d2) (values nil nil))
|
---|
54 | (t
|
---|
55 | (lex> p q start end)))))
|
---|
56 |
|
---|
57 |
|
---|
58 | ;; total degree, ties broken by reverse lexicographic
|
---|
59 | (defun grevlex> (p q &optional (start 0) (end (monom-dimension p)))
|
---|
60 | "Return T if P>Q with respect to graded reverse lexicographic order,
|
---|
61 | NIL otherwise. The second returned value is T if P=Q, otherwise it is NIL."
|
---|
62 | (declare (type monom p q) (type fixnum start end))
|
---|
63 | (let ((d1 (monom-total-degree p start end))
|
---|
64 | (d2 (monom-total-degree q start end)))
|
---|
65 | (cond
|
---|
66 | ((> d1 d2) (values t nil))
|
---|
67 | ((< d1 d2) (values nil nil))
|
---|
68 | (t
|
---|
69 | (revlex> p q start end)))))
|
---|
70 |
|
---|
71 |
|
---|
72 | ;; reverse lexicographic
|
---|
73 | (defun revlex> (p q &optional (start 0) (end (monom-dimension p)))
|
---|
74 | "Return T if P>Q with respect to reverse lexicographic order, NIL
|
---|
75 | otherwise. The second returned value is T if P=Q, otherwise it is
|
---|
76 | NIL. This is not and admissible monomial order because some sets do
|
---|
77 | not have a minimal element. This order is useful in constructing other
|
---|
78 | orders."
|
---|
79 | (declare (type monom p q) (type fixnum start end))
|
---|
80 | (do ((i (1- end) (1- i)))
|
---|
81 | ((< i start) (values nil t))
|
---|
82 | (declare (type fixnum i))
|
---|
83 | (cond
|
---|
84 | ((< (monom-elt p i) (monom-elt q i))
|
---|
85 | (return-from revlex> (values t nil)))
|
---|
86 | ((> (monom-elt p i) (monom-elt q i))
|
---|
87 | (return-from revlex> (values nil nil))))))
|
---|
88 |
|
---|
89 |
|
---|
90 | (defun invlex> (p q &optional (start 0) (end (monom-dimension p)))
|
---|
91 | "Return T if P>Q with respect to inverse lexicographic order, NIL otherwise
|
---|
92 | The second returned value is T if P=Q, otherwise it is NIL."
|
---|
93 | (declare (type monom p q) (type fixnum start end))
|
---|
94 | (do ((i (1- end) (1- i)))
|
---|
95 | ((< i start) (values nil t))
|
---|
96 | (declare (type fixnum i))
|
---|
97 | (cond
|
---|
98 | ((> (monom-elt p i) (monom-elt q i))
|
---|
99 | (return-from invlex> (values t nil)))
|
---|
100 | ((< (monom-elt p i) (monom-elt q i))
|
---|
101 | (return-from invlex> (values nil nil))))))
|
---|