close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/order.lisp@ 1931

Last change on this file since 1931 was 1931, checked in by Marek Rychlik, 10 years ago

* empty log message *

File size: 6.7 KB
Line 
1;;; -*- Mode: Lisp -*-
2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
22;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
23;;
24;; Implementations of various admissible monomial orders
25;; Implementation of order-making functions/closures.
26;;
27;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
28
29(defpackage "ORDER"
30 (:use :cl :monom)
31 (:export "LEX>"
32 "GRLEX>"
33 "REVLEX>"
34 "GREVLEX>"
35 "INVLEX>"
36 "REVERSE-MONOMIAL-ORDER"
37 "MAKE-ELIMINATION-ORDER-FACTORY"))
38
39(in-package :order)
40
41;; pure lexicographic
42(defun lex> (p q &optional (start 0) (end (monom-dimension p)))
43 "Return T if P>Q with respect to lexicographic order, otherwise NIL.
44The second returned value is T if P=Q, otherwise it is NIL."
45 (declare (type monom p q) (type fixnum start end))
46 (do ((i start (1+ i)))
47 ((>= i end) (values nil t))
48 (cond
49 ((> (monom-elt p i) (monom-elt q i))
50 (return-from lex> (values t nil)))
51 ((< (monom-elt p i) (monom-elt q i))
52 (return-from lex> (values nil nil))))))
53
54;; total degree order , ties broken by lexicographic
55(defun grlex> (p q &optional (start 0) (end (monom-dimension p)))
56 "Return T if P>Q with respect to graded lexicographic order, otherwise NIL.
57The second returned value is T if P=Q, otherwise it is NIL."
58 (declare (type monom p q) (type fixnum start end))
59 (let ((d1 (monom-total-degree p start end))
60 (d2 (monom-total-degree q start end)))
61 (cond
62 ((> d1 d2) (values t nil))
63 ((< d1 d2) (values nil nil))
64 (t
65 (lex> p q start end)))))
66
67
68;; reverse lexicographic
69(defun revlex> (p q &optional (start 0) (end (monom-dimension p)))
70 "Return T if P>Q with respect to reverse lexicographic order, NIL
71otherwise. The second returned value is T if P=Q, otherwise it is
72NIL. This is not and admissible monomial order because some sets do
73not have a minimal element. This order is useful in constructing other
74orders."
75 (do ((i (1- end) (1- i)))
76 ((< i start) (values nil t))
77 (cond
78 ((< (monom-elt p i) (monom-elt q i))
79 (return-from revlex> (values t nil)))
80 ((> (monom-elt p i) (monom-elt q i))
81 (return-from revlex> (values nil nil))))))
82
83
84;; total degree, ties broken by reverse lexicographic
85(defun grevlex> (p q &optional (start 0) (end (monom-dimension p)))
86 "Return T if P>Q with respect to graded reverse lexicographic order,
87NIL otherwise. The second returned value is T if P=Q, otherwise it is NIL."
88 (declare (type monom p q) (type fixnum start end))
89 (let ((d1 (monom-total-degree p start end))
90 (d2 (monom-total-degree q start end)))
91 (cond
92 ((> d1 d2) (values t nil))
93 ((< d1 d2) (values nil nil))
94 (t
95 (revlex> p q start end)))))
96
97(defun invlex> (p q &optional (start 0) (end (monom-dimension p)))
98 "Return T if P>Q with respect to inverse lexicographic order, NIL otherwise
99The second returned value is T if P=Q, otherwise it is NIL."
100 (declare (type monom p q) (type fixnum start end))
101 (do ((i (1- end) (1- i)))
102 ((< i start) (values nil t))
103 (cond
104 ((> (monom-elt p i) (monom-elt q i))
105 (return-from invlex> (values t nil)))
106 ((< (monom-elt p i) (monom-elt q i))
107 (return-from invlex> (values nil nil))))))
108
109
110(defun reverse-monomial-order (order)
111 "Create the inverse monomial order to the given monomial order ORDER."
112 #'(lambda (p q &optional (start 0) (end (monom-dimension q)))
113 (declare (type monom p q) (type fixnum start end))
114 (funcall order q p start end)))
115
116;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
117;;
118;; Order making functions
119;;
120;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
121
122;; This returns a closure with the same signature
123;; as all orders such as #'LEX>.
124(defun make-elimination-order-factory-1 (&optional (secondary-elimination-order #'lex>))
125 "It constructs an elimination order used for the 1-st elimination ideal,
126i.e. for eliminating the first variable. Thus, the order compares the degrees of the
127first variable in P and Q first, with ties broken by SECONDARY-ELIMINATION-ORDER."
128 #'(lambda (p q &optional (start 0) (end (monom-dimension p)))
129 (cond
130 ((> (monom-elt p start) (monom-elt q start))
131 (values t nil))
132 ((< (monom-elt p start) (monom-elt q start))
133 (values nil nil))
134 (t
135 (funcall secondary-elimination-order p q (1+ start) end)))))
136
137;; This returns a closure which is called with an integer argument.
138;; The result is *another closure* with the same signature as all
139;; orders such as #'LEX>.
140(defun make-elimination-order-factory (&optional
141 (primary-elimination-order #'lex>)
142 (secondary-elimination-order #'lex>))
143 "Return a function with a single integer argument K. This should be
144the number of initial K variables X[0],X[1],...,X[K-1], which precede
145remaining variables. The call to the closure creates a predicate
146which compares monomials according to the K-th elimination order. The
147monomial orders PRIMARY-ELIMINATION-ORDER and
148SECONDARY-ELIMINATION-ORDER are used to compare the first K and the
149remaining variables, respectively, with ties broken by lexicographical
150order. That is, if PRIMARY-ELIMINATION-ORDER yields (VALUES NIL T),
151which indicates that the first K variables appear with identical
152powers, then the result is that of a call to
153SECONDARY-ELIMINATION-ORDER applied to the remaining variables
154X[K],X[K+1],..."
155 #'(lambda (k)
156 (cond
157 ((<= k 0)
158 (error "K must be at least 1"))
159 ((= k 1)
160 (make-elimination-order-factory-1 secondary-elimination-order))
161 (t
162 #'(lambda (p q &optional (start 0) (end (monom-dimension p)))
163 (multiple-value-bind (primary equal)
164 (funcall primary-elimination-order p q start k)
165 (if equal
166 (funcall secondary-elimination-order p q k end)
167 (values primary nil))))))))
168
Note: See TracBrowser for help on using the repository browser.