;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;; ;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik ;;; ;;; This program is free software; you can redistribute it and/or modify ;;; it under the terms of the GNU General Public License as published by ;;; the Free Software Foundation; either version 2 of the License, or ;;; (at your option) any later version. ;;; ;;; This program is distributed in the hope that it will be useful, ;;; but WITHOUT ANY WARRANTY; without even the implied warranty of ;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ;;; GNU General Public License for more details. ;;; ;;; You should have received a copy of the GNU General Public License ;;; along with this program; if not, write to the Free Software ;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. ;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (defpackage "ORDER-MK" (:use :cl :order :monomial) (:export "MONOMIAL-ORDER" "REVERSE-MONOMIAL-ORDER" "*PRIMARY-ELIMINATION-ORDER*" "*SECONDARY-ELIMINATION-ORDER*" "*ELIMINATION-ORDER*" "ELIMINATION-ORDER" "ELIMINATION-ORDER-1")) (in-package :order-mk) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; ;; Some globally-defined variables holding monomial orders ;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (defvar *monomial-order* #'lex> "Default order for monomial comparisons. This global variable holds the order which is in effect when performing polynomial arithmetic. The global order is called by the macro MONOMIAL-ORDER, which is somewhat more elegant than FUNCALL.") (defmacro monomial-order (x y) "Calls the global monomial order function, held by *MONOMIAL-ORDER*." `(funcall *monomial-order* ,x ,y)) (defmacro reverse-monomial-order (x y) "Calls the inverse monomial order to the global monomial order function, held by *MONOMIAL-ORDER*." `(monomial-order ,y ,x)) (defvar *primary-elimination-order* #'lex>) (defvar *secondary-elimination-order* #'lex>) (defvar *elimination-order* nil "Default elimination order used in elimination-based functions. If not NIL, it is assumed to be a proper elimination order. If NIL, we will construct an elimination order using the values of *PRIMARY-ELIMINATION-ORDER* and *SECONDARY-ELIMINATION-ORDER*.") ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; ;; Order making functions ;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (defun elimination-order (k) "Return a predicate which compares monomials according to the K-th elimination order. Two variables *PRIMARY-ELIMINATION-ORDER* and *SECONDARY-ELIMINATION-ORDER* control the behavior on the first K and the remaining variables, respectively." (declare (type fixnum k)) #'(lambda (p q &optional (start 0) (end (monom-dimension p))) (declare (type monom p q) (type fixnum start end)) (multiple-value-bind (primary equal) (funcall *primary-elimination-order* p q start k) (if equal (funcall *secondary-elimination-order* p q k end) (values primary nil))))) (defun elimination-order-1 (p q &optional (start 0) (end (monom-dimension p))) "Equivalent to the function returned by the call to (ELIMINATION-ORDER 1)." (declare (type monom p q) (type fixnum start end)) (cond ((> (monom-elt p start) (monom-elt q start)) (values t nil)) ((< (monom-elt p start) (monom-elt q start)) (values nil nil)) (t (funcall *secondary-elimination-order* p q (1+ start) end))))