[79] | 1 | ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*-
|
---|
| 2 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 3 | ;;;
|
---|
| 4 | ;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
|
---|
| 5 | ;;;
|
---|
| 6 | ;;; This program is free software; you can redistribute it and/or modify
|
---|
| 7 | ;;; it under the terms of the GNU General Public License as published by
|
---|
| 8 | ;;; the Free Software Foundation; either version 2 of the License, or
|
---|
| 9 | ;;; (at your option) any later version.
|
---|
| 10 | ;;;
|
---|
| 11 | ;;; This program is distributed in the hope that it will be useful,
|
---|
| 12 | ;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 13 | ;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 14 | ;;; GNU General Public License for more details.
|
---|
| 15 | ;;;
|
---|
| 16 | ;;; You should have received a copy of the GNU General Public License
|
---|
| 17 | ;;; along with this program; if not, write to the Free Software
|
---|
| 18 | ;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
---|
| 19 | ;;;
|
---|
| 20 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 21 |
|
---|
[413] | 22 | (defpackage "ORDER-MK"
|
---|
[428] | 23 | (:use :cl :order :monomial)
|
---|
[413] | 24 | (:export "MONOMIAL-ORDER"
|
---|
| 25 | "REVERSE-MONOMIAL-ORDER"
|
---|
| 26 | "*PRIMARY-ELIMINATION-ORDER*"
|
---|
| 27 | "*SECONDARY-ELIMINATION-ORDER*"
|
---|
| 28 | "*ELIMINATION-ORDER*"
|
---|
| 29 | "ELIMINATION-ORDER"
|
---|
| 30 | "ELIMINATION-ORDER-1"))
|
---|
[79] | 31 |
|
---|
[427] | 32 | (in-package :order-mk)
|
---|
| 33 |
|
---|
[429] | 34 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 35 | ;;
|
---|
| 36 | ;; Some globally-defined variables holding monomial orders
|
---|
[430] | 37 | ;; and related macros/functions.
|
---|
[429] | 38 | ;;
|
---|
| 39 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 40 |
|
---|
[79] | 41 | (defvar *monomial-order* #'lex>
|
---|
[414] | 42 | "Default order for monomial comparisons. This global variable holds
|
---|
| 43 | the order which is in effect when performing polynomial
|
---|
| 44 | arithmetic. The global order is called by the macro MONOMIAL-ORDER,
|
---|
| 45 | which is somewhat more elegant than FUNCALL.")
|
---|
[79] | 46 |
|
---|
| 47 | (defmacro monomial-order (x y)
|
---|
[415] | 48 | "Calls the global monomial order function, held by *MONOMIAL-ORDER*."
|
---|
[79] | 49 | `(funcall *monomial-order* ,x ,y))
|
---|
| 50 |
|
---|
[416] | 51 | (defmacro reverse-monomial-order (x y)
|
---|
[415] | 52 | "Calls the inverse monomial order to the global monomial order function,
|
---|
| 53 | held by *MONOMIAL-ORDER*."
|
---|
[416] | 54 | `(monomial-order ,y ,x))
|
---|
[79] | 55 |
|
---|
| 56 | (defvar *primary-elimination-order* #'lex>)
|
---|
| 57 |
|
---|
| 58 | (defvar *secondary-elimination-order* #'lex>)
|
---|
| 59 |
|
---|
| 60 | (defvar *elimination-order* nil
|
---|
| 61 | "Default elimination order used in elimination-based functions.
|
---|
| 62 | If not NIL, it is assumed to be a proper elimination order. If NIL,
|
---|
| 63 | we will construct an elimination order using the values of
|
---|
| 64 | *PRIMARY-ELIMINATION-ORDER* and *SECONDARY-ELIMINATION-ORDER*.")
|
---|
| 65 |
|
---|
[414] | 66 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 67 | ;;
|
---|
| 68 | ;; Order making functions
|
---|
| 69 | ;;
|
---|
| 70 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 71 |
|
---|
[79] | 72 | (defun elimination-order (k)
|
---|
| 73 | "Return a predicate which compares monomials according to the
|
---|
| 74 | K-th elimination order. Two variables *PRIMARY-ELIMINATION-ORDER*
|
---|
| 75 | and *SECONDARY-ELIMINATION-ORDER* control the behavior on the first K
|
---|
| 76 | and the remaining variables, respectively."
|
---|
| 77 | (declare (type fixnum k))
|
---|
| 78 | #'(lambda (p q &optional (start 0) (end (monom-dimension p)))
|
---|
| 79 | (declare (type monom p q) (type fixnum start end))
|
---|
| 80 | (multiple-value-bind (primary equal)
|
---|
| 81 | (funcall *primary-elimination-order* p q start k)
|
---|
| 82 | (if equal
|
---|
| 83 | (funcall *secondary-elimination-order* p q k end)
|
---|
| 84 | (values primary nil)))))
|
---|
| 85 |
|
---|
| 86 | (defun elimination-order-1 (p q &optional (start 0) (end (monom-dimension p)))
|
---|
| 87 | "Equivalent to the function returned by the call to (ELIMINATION-ORDER 1)."
|
---|
| 88 | (declare (type monom p q) (type fixnum start end))
|
---|
| 89 | (cond
|
---|
| 90 | ((> (monom-elt p start) (monom-elt q start)) (values t nil))
|
---|
| 91 | ((< (monom-elt p start) (monom-elt q start)) (values nil nil))
|
---|
| 92 | (t (funcall *secondary-elimination-order* p q (1+ start) end))))
|
---|