;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;; ;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik ;;; ;;; This program is free software; you can redistribute it and/or modify ;;; it under the terms of the GNU General Public License as published by ;;; the Free Software Foundation; either version 2 of the License, or ;;; (at your option) any later version. ;;; ;;; This program is distributed in the hope that it will be useful, ;;; but WITHOUT ANY WARRANTY; without even the implied warranty of ;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ;;; GNU General Public License for more details. ;;; ;;; You should have received a copy of the GNU General Public License ;;; along with this program; if not, write to the Free Software ;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. ;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; ;; Load this file into Maxima to bootstrap the Grobner package. ;; ;; DETAILS: This file implements an interface between the Grobner ;; basis package NGROBNER and Maxima. NGROBNER for efficiency uses its ;; own representation of polynomials. Thus, it is necessary to convert ;; Maxima representation to the internal representation and back. The ;; facilities to do so are implemented in this file. ;; ;; Also, since the NGROBNER package consists of many Lisp files, it is ;; necessary to load the files. Unfortunately, it is not quite ;; possible to use ASDF for this purpose, although NGROBNER can be ;; loaded into lisp using ASDF. Perhaps one day... For now, ;; we use LOAD to accomplish this task. ;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (in-package :maxima) (macsyma-module cgb-maxima) (eval-when #+gcl (load eval) #-gcl (:load-toplevel :execute) (format t "~&Loading maxima-grobner ~a ~a~%" "$Revision: 2.0 $" "$Date: 2015/06/02 0:34:17 $")) ;;FUNCTS is loaded because it contains the definition of LCM ($load "functs") #+sbcl(progn (require 'asdf) (load "ngrobner.asd")(asdf:load-system :ngrobner)) ;; Compile/load NGROBNER package files. NOTE: the order of files is ;; important! (defun compile-ngrobner () (dolist (file '("ngrobner-package" "utils" "ngrobner" "monomial" "order" "order-mk" "term" "termlist" "polynomial" "priority-queue" "pair-queue" "division" "criterion" "buchberger" "gebauer-moeller" "gb-postprocessing" "ideal")) (load file :verbose t))) (use-package :ngrobner) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; ;; Maxima expression ring ;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (defparameter *maxima-ring* (make-ring ;;(defun coeff-zerop (expr) (meval1 `(($is) (($equal) ,expr 0)))) :parse #'(lambda (expr) (when modulus (setf expr ($rat expr))) expr) :unit #'(lambda () (if modulus ($rat 1) 1)) :zerop #'(lambda (expr) ;;When is exactly a maxima expression equal to 0? (cond ((numberp expr) (= expr 0)) ((atom expr) nil) (t (case (caar expr) (mrat (eql ($ratdisrep expr) 0)) (otherwise (eql ($totaldisrep expr) 0)))))) :add #'(lambda (x y) (m+ x y)) :sub #'(lambda (x y) (m- x y)) :uminus #'(lambda (x) (m- x)) :mul #'(lambda (x y) (m* x y)) ;;(defun coeff-div (x y) (cadr ($divide x y))) :div #'(lambda (x y) (m// x y)) :lcm #'(lambda (x y) (meval1 `((|$LCM|) ,x ,y))) :ezgcd #'(lambda (x y) (apply #'values (cdr ($ezgcd ($totaldisrep x) ($totaldisrep y))))) ;; :gcd #'(lambda (x y) (second ($ezgcd x y))))) :gcd #'(lambda (x y) ($gcd x y)))) (setf *expression-ring* *maxima-ring*) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; ;; Maxima expression parsing ;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (defun equal-test-p (expr1 expr2) (alike1 expr1 expr2)) (defun coerce-maxima-list (expr) "convert a maxima list to lisp list." (cond ((and (consp (car expr)) (eql (caar expr) 'mlist)) (cdr expr)) (t expr))) (defun free-of-vars (expr vars) (apply #'$freeof `(,@vars ,expr))) (defun parse-poly (expr vars &aux (vars (coerce-maxima-list vars))) "Convert a maxima polynomial expression EXPR in variables VARS to internal form." (labels ((parse (arg) (parse-poly arg vars)) (parse-list (args) (mapcar #'parse args))) (cond ((eql expr 0) (make-poly-zero)) ((member expr vars :test #'equal-test-p) (let ((pos (position expr vars :test #'equal-test-p))) (make-variable *expression-ring* (length vars) pos))) ((free-of-vars expr vars) ;;This means that variable-free CRE and Poisson forms will be converted ;;to coefficients intact (coerce-coeff *expression-ring* expr vars)) (t (case (caar expr) (mplus (reduce #'(lambda (x y) (poly-add *expression-ring* x y)) (parse-list (cdr expr)))) (mminus (poly-uminus *expression-ring* (parse (cadr expr)))) (mtimes (if (endp (cddr expr)) ;unary (parse (cdr expr)) (reduce #'(lambda (p q) (poly-mul *expression-ring* p q)) (parse-list (cdr expr))))) (mexpt (cond ((member (cadr expr) vars :test #'equal-test-p) ;;Special handling of (expt var pow) (let ((pos (position (cadr expr) vars :test #'equal-test-p))) (make-variable *expression-ring* (length vars) pos (caddr expr)))) ((not (and (integerp (caddr expr)) (plusp (caddr expr)))) ;; Negative power means division in coefficient ring ;; Non-integer power means non-polynomial coefficient (mtell "~%Warning: Expression ~%~M~%contains power which is not a positive integer. Parsing as coefficient.~%" expr) (coerce-coeff *expression-ring* expr vars)) (t (poly-expt *expression-ring* (parse (cadr expr)) (caddr expr))))) (mrat (parse ($ratdisrep expr))) (mpois (parse ($outofpois expr))) (otherwise (coerce-coeff *expression-ring* expr vars))))))) (defun parse-poly-list (expr vars) (case (caar expr) (mlist (mapcar #'(lambda (p) (parse-poly p vars)) (cdr expr))) (t (merror "Expression ~M is not a list of polynomials in variables ~M." expr vars)))) (defun parse-poly-list-list (poly-list-list vars) (mapcar #'(lambda (g) (parse-poly-list g vars)) (coerce-maxima-list poly-list-list))) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; ;; Conversion from internal form to Maxima general form ;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (defun maxima-head () (if $poly_return_term_list '(mlist) '(mplus))) (defun coerce-to-maxima (poly-type object vars) (case poly-type (:polynomial `(,(maxima-head) ,@(mapcar #'(lambda (term) (coerce-to-maxima :term term vars)) (poly-termlist object)))) (:poly-list `((mlist) ,@(mapcar #'(lambda (p) (funcall *ratdisrep-fun* (coerce-to-maxima :polynomial p vars))) object))) (:term `((mtimes) ,(funcall *ratdisrep-fun* (term-coeff object)) ,@(mapcar #'(lambda (var power) `((mexpt) ,var ,power)) vars (monom-exponents (term-monom object))))) ;; Assumes that Lisp and Maxima logicals coincide (:logical object) (otherwise object))) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; ;; Unary and binary operation definition facility ;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (defmacro define-unop (maxima-name fun-name &optional (documentation nil documentation-supplied-p)) "Define a MAXIMA-level unary operator MAXIMA-NAME corresponding to unary function FUN-NAME." `(defun ,maxima-name (p vars &aux (vars (coerce-maxima-list vars)) (p (parse-poly p vars))) ,@(when documentation-supplied-p (list documentation)) (coerce-to-maxima :polynomial (,fun-name *expression-ring* p) vars))) (defmacro define-binop (maxima-name fun-name &optional (documentation nil documentation-supplied-p)) "Define a MAXIMA-level binary operator MAXIMA-NAME corresponding to binary function FUN-NAME." `(defmfun ,maxima-name (p q vars &aux (vars (coerce-maxima-list vars)) (p (parse-poly p vars)) (q (parse-poly q vars))) ,@(when documentation-supplied-p (list documentation)) (coerce-to-maxima :polynomial (,fun-name *expression-ring* p q) vars))) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; ;; Facilities for evaluating Grobner package expressions ;; within a prepared environment ;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (defmacro with-monomial-order ((order) &body body) "Evaluate BODY with monomial order set to ORDER." `(let ((*monomial-order* (or (find-order ,order) *monomial-order*))) . ,body)) (defmacro with-coefficient-ring ((ring) &body body) "Evaluate BODY with coefficient ring set to RING." `(let ((*expression-ring* (or (find-ring ,ring) *expression-ring*))) . ,body)) (defmacro with-elimination-orders ((primary secondary elimination-order) &body body) "Evaluate BODY with primary and secondary elimination orders set to PRIMARY and SECONDARY." `(let ((*primary-elimination-order* (or (find-order ,primary) *primary-elimination-order*)) (*secondary-elimination-order* (or (find-order ,secondary) *secondary-elimination-order*)) (*elimination-order* (or (find-order ,elimination-order) *elimination-order*))) . ,body)) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; ;; Maxima-level interface functions ;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Auxillary function for removing zero polynomial (defun remzero (plist) (remove #'poly-zerop plist)) ;;Simple operators (define-binop $poly_add poly-add "Adds two polynomials P and Q") (define-binop $poly_subtract poly-sub "Subtracts a polynomial Q from P.") (define-binop $poly_multiply poly-mul "Returns the product of polynomials P and Q.") (define-binop $poly_s_polynomial spoly "Returns the syzygy polynomial (S-polynomial) of two polynomials P and Q.") (define-unop $poly_primitive_part poly-primitive-part "Returns the polynomial P divided by GCD of its coefficients.") (define-unop $poly_normalize poly-normalize "Returns the polynomial P divided by the leading coefficient.") ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; ;; Macro facility for writing Maxima-level wrappers for ;; functions operating on internal representation ;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (defmacro with-parsed-polynomials (((maxima-vars &optional (maxima-new-vars nil new-vars-supplied-p)) &key (polynomials nil) (poly-lists nil) (poly-list-lists nil) (value-type nil)) &body body &aux (vars (gensym)) (new-vars (gensym))) `(let ((,vars (coerce-maxima-list ,maxima-vars)) ,@(when new-vars-supplied-p (list `(,new-vars (coerce-maxima-list ,maxima-new-vars))))) (coerce-to-maxima ,value-type (with-coefficient-ring ($poly_coefficient_ring) (with-monomial-order ($poly_monomial_order) (with-elimination-orders ($poly_primary_elimination_order $poly_secondary_elimination_order $poly_elimination_order) (let ,(let ((args nil)) (dolist (p polynomials args) (setf args (cons `(,p (parse-poly ,p ,vars)) args))) (dolist (p poly-lists args) (setf args (cons `(,p (parse-poly-list ,p ,vars)) args))) (dolist (p poly-list-lists args) (setf args (cons `(,p (parse-poly-list-list ,p ,vars)) args)))) . ,body)))) ,(if new-vars-supplied-p `(append ,vars ,new-vars) vars)))) ;;Functions (defmfun $poly_expand (p vars) "This function is equivalent to EXPAND(P) if P parses correctly to a polynomial. If the representation is not compatible with a polynomial in variables VARS, the result is an error." (with-parsed-polynomials ((vars) :polynomials (p) :value-type :polynomial) p)) (defmfun $poly_expt (p n vars) (with-parsed-polynomials ((vars) :polynomials (p) :value-type :polynomial) (poly-expt *expression-ring* p n))) (defmfun $poly_content (p vars) (with-parsed-polynomials ((vars) :polynomials (p)) (poly-content *expression-ring* p))) (defmfun $poly_pseudo_divide (f fl vars &aux (vars (coerce-maxima-list vars)) (f (parse-poly f vars)) (fl (parse-poly-list fl vars))) (multiple-value-bind (quot rem c division-count) (poly-pseudo-divide *expression-ring* f fl) `((mlist) ,(coerce-to-maxima :poly-list quot vars) ,(coerce-to-maxima :polynomial rem vars) ,c ,division-count))) (defmfun $poly_exact_divide (f g vars) (with-parsed-polynomials ((vars) :polynomials (f g) :value-type :polynomial) (poly-exact-divide *expression-ring* f g))) (defmfun $poly_normal_form (f fl vars) (with-parsed-polynomials ((vars) :polynomials (f) :poly-lists (fl) :value-type :polynomial) (normal-form *expression-ring* f (remzero fl) nil))) (defmfun $poly_buchberger_criterion (g vars) (with-parsed-polynomials ((vars) :poly-lists (g) :value-type :logical) (buchberger-criterion *expression-ring* g))) (defmfun $poly_buchberger (fl vars) (with-parsed-polynomials ((vars) :poly-lists (fl) :value-type :poly-list) (buchberger *expression-ring* (remzero fl) 0 nil))) (defmfun $poly_reduction (plist vars) (with-parsed-polynomials ((vars) :poly-lists (plist) :value-type :poly-list) (reduction *expression-ring* plist))) (defmfun $poly_minimization (plist vars) (with-parsed-polynomials ((vars) :poly-lists (plist) :value-type :poly-list) (minimization plist))) (defmfun $poly_normalize_list (plist vars) (with-parsed-polynomials ((vars) :poly-lists (plist) :value-type :poly-list) (poly-normalize-list *expression-ring* plist))) (defmfun $poly_grobner (f vars) (with-parsed-polynomials ((vars) :poly-lists (f) :value-type :poly-list) (grobner *expression-ring* (remzero f)))) (defmfun $poly_reduced_grobner (f vars) (with-parsed-polynomials ((vars) :poly-lists (f) :value-type :poly-list) (reduced-grobner *expression-ring* (remzero f)))) (defmfun $poly_depends_p (p var mvars &aux (vars (coerce-maxima-list mvars)) (pos (position var vars))) (if (null pos) (merror "~%Variable ~M not in the list of variables ~M." var mvars) (poly-depends-p (parse-poly p vars) pos))) (defmfun $poly_elimination_ideal (flist k vars) (with-parsed-polynomials ((vars) :poly-lists (flist) :value-type :poly-list) (elimination-ideal *expression-ring* flist k nil 0))) (defmfun $poly_colon_ideal (f g vars) (with-parsed-polynomials ((vars) :poly-lists (f g) :value-type :poly-list) (colon-ideal *expression-ring* f g nil))) (defmfun $poly_ideal_intersection (f g vars) (with-parsed-polynomials ((vars) :poly-lists (f g) :value-type :poly-list) (ideal-intersection *expression-ring* f g nil))) (defmfun $poly_lcm (f g vars) (with-parsed-polynomials ((vars) :polynomials (f g) :value-type :polynomial) (poly-lcm *expression-ring* f g))) (defmfun $poly_gcd (f g vars) ($first ($divide (m* f g) ($poly_lcm f g vars)))) (defmfun $poly_grobner_equal (g1 g2 vars) (with-parsed-polynomials ((vars) :poly-lists (g1 g2)) (grobner-equal *expression-ring* g1 g2))) (defmfun $poly_grobner_subsetp (g1 g2 vars) (with-parsed-polynomials ((vars) :poly-lists (g1 g2)) (grobner-subsetp *expression-ring* g1 g2))) (defmfun $poly_grobner_member (p g vars) (with-parsed-polynomials ((vars) :polynomials (p) :poly-lists (g)) (grobner-member *expression-ring* p g))) (defmfun $poly_ideal_saturation1 (f p vars) (with-parsed-polynomials ((vars) :poly-lists (f) :polynomials (p) :value-type :poly-list) (ideal-saturation-1 *expression-ring* f p 0))) (defmfun $poly_saturation_extension (f plist vars new-vars) (with-parsed-polynomials ((vars new-vars) :poly-lists (f plist) :value-type :poly-list) (saturation-extension *expression-ring* f plist))) (defmfun $poly_polysaturation_extension (f plist vars new-vars) (with-parsed-polynomials ((vars new-vars) :poly-lists (f plist) :value-type :poly-list) (polysaturation-extension *expression-ring* f plist))) (defmfun $poly_ideal_polysaturation1 (f plist vars) (with-parsed-polynomials ((vars) :poly-lists (f plist) :value-type :poly-list) (ideal-polysaturation-1 *expression-ring* f plist 0 nil))) (defmfun $poly_ideal_saturation (f g vars) (with-parsed-polynomials ((vars) :poly-lists (f g) :value-type :poly-list) (ideal-saturation *expression-ring* f g 0 nil))) (defmfun $poly_ideal_polysaturation (f ideal-list vars) (with-parsed-polynomials ((vars) :poly-lists (f) :poly-list-lists (ideal-list) :value-type :poly-list) (ideal-polysaturation *expression-ring* f ideal-list 0 nil))) (defmfun $poly_lt (f vars) (with-parsed-polynomials ((vars) :polynomials (f) :value-type :polynomial) (make-poly-from-termlist (list (poly-lt f))))) (defmfun $poly_lm (f vars) (with-parsed-polynomials ((vars) :polynomials (f) :value-type :polynomial) (make-poly-from-termlist (list (make-term (poly-lm f) (funcall (ring-unit *expression-ring*)))))))