| 1 | ;;; -*-  Mode: Lisp -*- | 
|---|
| 2 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
| 3 | ;;; | 
|---|
| 4 | ;;;  Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu> | 
|---|
| 5 | ;;; | 
|---|
| 6 | ;;;  This program is free software; you can redistribute it and/or modify | 
|---|
| 7 | ;;;  it under the terms of the GNU General Public License as published by | 
|---|
| 8 | ;;;  the Free Software Foundation; either version 2 of the License, or | 
|---|
| 9 | ;;;  (at your option) any later version. | 
|---|
| 10 | ;;; | 
|---|
| 11 | ;;;  This program is distributed in the hope that it will be useful, | 
|---|
| 12 | ;;;  but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|---|
| 13 | ;;;  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|---|
| 14 | ;;;  GNU General Public License for more details. | 
|---|
| 15 | ;;; | 
|---|
| 16 | ;;;  You should have received a copy of the GNU General Public License | 
|---|
| 17 | ;;;  along with this program; if not, write to the Free Software | 
|---|
| 18 | ;;;  Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | 
|---|
| 19 | ;;; | 
|---|
| 20 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
| 21 |  | 
|---|
| 22 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
| 23 | ;; | 
|---|
| 24 | ;; Load this file into Maxima to bootstrap the Grobner package. | 
|---|
| 25 | ;; NOTE: This file does use symbols defined by Maxima, so it | 
|---|
| 26 | ;; will not work when loaded in Common Lisp. | 
|---|
| 27 | ;; | 
|---|
| 28 | ;; DETAILS: This file implements an interface between the Grobner | 
|---|
| 29 | ;; basis package NGROBNER, which is a pure Common Lisp package, and | 
|---|
| 30 | ;; Maxima. NGROBNER for efficiency uses its own representation of | 
|---|
| 31 | ;; polynomials. Thus, it is necessary to convert Maxima representation | 
|---|
| 32 | ;; to the internal representation and back. The facilities to do so | 
|---|
| 33 | ;; are implemented in this file. | 
|---|
| 34 | ;; | 
|---|
| 35 | ;; Also, since the NGROBNER package consists of many Lisp files, it is | 
|---|
| 36 | ;; necessary to load the files. It is possible and preferrable to use | 
|---|
| 37 | ;; ASDF for this purpose. The default is ASDF. It is also possible to | 
|---|
| 38 | ;; simply used LOAD and COMPILE-FILE to accomplish this task. | 
|---|
| 39 | ;; | 
|---|
| 40 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
| 41 |  | 
|---|
| 42 | (in-package :maxima) | 
|---|
| 43 |  | 
|---|
| 44 | (macsyma-module cgb-maxima) | 
|---|
| 45 |  | 
|---|
| 46 |  | 
|---|
| 47 | (eval-when | 
|---|
| 48 | #+gcl (load eval) | 
|---|
| 49 | #-gcl (:load-toplevel :execute) | 
|---|
| 50 | (format t "~&Loading maxima-grobner ~a ~a~%" | 
|---|
| 51 | "$Revision: 2.0 $" "$Date: 2015/06/02 0:34:17 $")) | 
|---|
| 52 |  | 
|---|
| 53 | ;;FUNCTS is loaded because it contains the definition of LCM | 
|---|
| 54 | ($load "functs") | 
|---|
| 55 | #+sbcl(progn (require 'asdf) (load "ngrobner.asd")(asdf:load-system :ngrobner)) | 
|---|
| 56 |  | 
|---|
| 57 | (use-package :ngrobner) | 
|---|
| 58 |  | 
|---|
| 59 |  | 
|---|
| 60 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
| 61 | ;; | 
|---|
| 62 | ;; Maxima expression ring | 
|---|
| 63 | ;; | 
|---|
| 64 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
| 65 | ;; | 
|---|
| 66 | ;; This is how we perform operations on coefficients | 
|---|
| 67 | ;; using Maxima functions. | 
|---|
| 68 | ;; | 
|---|
| 69 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
| 70 |  | 
|---|
| 71 | (defparameter +maxima-ring+ | 
|---|
| 72 | (make-ring | 
|---|
| 73 | ;;(defun coeff-zerop (expr) (meval1 `(($is) (($equal) ,expr 0)))) | 
|---|
| 74 | :parse #'(lambda (expr) | 
|---|
| 75 | (when modulus (setf expr ($rat expr))) | 
|---|
| 76 | expr) | 
|---|
| 77 | :unit #'(lambda () (if modulus ($rat 1) 1)) | 
|---|
| 78 | :zerop #'(lambda (expr) | 
|---|
| 79 | ;;When is exactly a maxima expression equal to 0? | 
|---|
| 80 | (cond ((numberp expr) | 
|---|
| 81 | (= expr 0)) | 
|---|
| 82 | ((atom expr) nil) | 
|---|
| 83 | (t | 
|---|
| 84 | (case (caar expr) | 
|---|
| 85 | (mrat (eql ($ratdisrep expr) 0)) | 
|---|
| 86 | (otherwise (eql ($totaldisrep expr) 0)))))) | 
|---|
| 87 | :add #'(lambda (x y) (m+ x y)) | 
|---|
| 88 | :sub #'(lambda (x y) (m- x y)) | 
|---|
| 89 | :uminus #'(lambda (x) (m- x)) | 
|---|
| 90 | :mul #'(lambda (x y) (m* x y)) | 
|---|
| 91 | ;;(defun coeff-div (x y) (cadr ($divide x y))) | 
|---|
| 92 | :div #'(lambda (x y) (m// x y)) | 
|---|
| 93 | :lcm #'(lambda (x y) (meval1 `((|$LCM|) ,x ,y))) | 
|---|
| 94 | :ezgcd #'(lambda (x y) (apply #'values (cdr ($ezgcd ($totaldisrep x) ($totaldisrep y))))) | 
|---|
| 95 | ;; :gcd #'(lambda (x y) (second ($ezgcd x y))))) | 
|---|
| 96 | :gcd #'(lambda (x y) ($gcd x y)))) | 
|---|
| 97 |  | 
|---|
| 98 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
| 99 | ;; | 
|---|
| 100 | ;; Maxima expression parsing | 
|---|
| 101 | ;; | 
|---|
| 102 | ;; | 
|---|
| 103 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
| 104 | ;; | 
|---|
| 105 | ;; Functions and macros dealing with internal representation | 
|---|
| 106 | ;; structure. | 
|---|
| 107 | ;; | 
|---|
| 108 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
| 109 |  | 
|---|
| 110 | (defun equal-test-p (expr1 expr2) | 
|---|
| 111 | (alike1 expr1 expr2)) | 
|---|
| 112 |  | 
|---|
| 113 | (defun coerce-maxima-list (expr) | 
|---|
| 114 | "Convert a Maxima list to Lisp list." | 
|---|
| 115 | (cond | 
|---|
| 116 | ((and (consp (car expr)) (eql (caar expr) 'mlist)) (cdr expr)) | 
|---|
| 117 | (t expr))) | 
|---|
| 118 |  | 
|---|
| 119 | (defun free-of-vars (expr vars) (apply #'$freeof `(,@vars ,expr))) | 
|---|
| 120 |  | 
|---|
| 121 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
| 122 | ;; | 
|---|
| 123 | ;; Order utilities | 
|---|
| 124 | ;; | 
|---|
| 125 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
| 126 |  | 
|---|
| 127 | (defun find-ring-by-name (ring) | 
|---|
| 128 | "This function returns the ring structure bases on input symbol." | 
|---|
| 129 | (cond | 
|---|
| 130 | ((null ring) nil) | 
|---|
| 131 | ((symbolp ring) | 
|---|
| 132 | (case ring | 
|---|
| 133 | ((maxima-ring  :maxima-ring #:maxima-ring $expression_ring #:expression_ring) | 
|---|
| 134 | +maxima-ring+) | 
|---|
| 135 | ((ring-of-integers :ring-of-integers #:ring-of-integers $ring_of_integers) +ring-of-integers+) | 
|---|
| 136 | (otherwise | 
|---|
| 137 | (mtell "~%Warning: Ring ~M not found. Using default.~%" ring)))) | 
|---|
| 138 | (t | 
|---|
| 139 | (mtell "~%Ring specification ~M is not recognized. Using default.~%" ring) | 
|---|
| 140 | nil))) | 
|---|
| 141 |  | 
|---|
| 142 | (defun find-order-by-name (order) | 
|---|
| 143 | "This function returns the order function bases on its name." | 
|---|
| 144 | (cond | 
|---|
| 145 | ((null order) nil) | 
|---|
| 146 | ((symbolp order) | 
|---|
| 147 | (case order | 
|---|
| 148 | ((lex :lex $lex #:lex) | 
|---|
| 149 | #'lex>) | 
|---|
| 150 | ((grlex :grlex $grlex #:grlex) | 
|---|
| 151 | #'grlex>) | 
|---|
| 152 | ((grevlex :grevlex $grevlex #:grevlex) | 
|---|
| 153 | #'grevlex>) | 
|---|
| 154 | ((invlex :invlex $invlex #:invlex) | 
|---|
| 155 | #'invlex>) | 
|---|
| 156 | (otherwise | 
|---|
| 157 | (mtell "~%Warning: Order ~M not found. Using default.~%" order)))) | 
|---|
| 158 | (t | 
|---|
| 159 | (mtell "~%Order specification ~M is not recognized. Using default.~%" order) | 
|---|
| 160 | nil))) | 
|---|
| 161 |  | 
|---|
| 162 | (defun find-ring-and-order-by-name (&optional | 
|---|
| 163 | (ring (find-ring-by-name $poly_coefficient_ring)) | 
|---|
| 164 | (order (find-order-by-name $poly_monomial_order)) | 
|---|
| 165 | (primary-elimination-order (find-order-by-name $poly_primary_elimination_order)) | 
|---|
| 166 | (secondary-elimination-order (find-order-by-name $poly_secondary_elimination_order)) | 
|---|
| 167 | &aux | 
|---|
| 168 | (ring-and-order (make-ring-and-order | 
|---|
| 169 | :ring  ring | 
|---|
| 170 | :order order | 
|---|
| 171 | :primary-elimination-order primary-elimination-order | 
|---|
| 172 | :secondary-elimination-order secondary-elimination-order))) | 
|---|
| 173 | "Build RING-AND-ORDER structure. The defaults are determined by various Maxima-level switches, | 
|---|
| 174 | which are names of ring and orders." | 
|---|
| 175 | ring-and-order) | 
|---|
| 176 |  | 
|---|
| 177 | (defun maxima->poly (expr vars | 
|---|
| 178 | &optional | 
|---|
| 179 | (ring-and-order (find-ring-and-order-by-name)) | 
|---|
| 180 | &aux | 
|---|
| 181 | (vars (coerce-maxima-list vars)) | 
|---|
| 182 | (ring (ro-ring ring-and-order))) | 
|---|
| 183 | "Convert a maxima polynomial expression EXPR in variables VARS to | 
|---|
| 184 | internal form. This works by first converting the expression to Lisp, | 
|---|
| 185 | and then evaluating the expression using polynomial arithmetic | 
|---|
| 186 | implemented by the POLYNOMIAL package." | 
|---|
| 187 | (labels ((parse (arg) (maxima->poly arg vars ring-and-order)) | 
|---|
| 188 | (parse-list (args) (mapcar #'parse args))) | 
|---|
| 189 | (cond | 
|---|
| 190 | ((eql expr 0) (make-poly-zero)) | 
|---|
| 191 | ((member expr vars :test #'equal-test-p) | 
|---|
| 192 | (let ((pos (position expr vars :test #'equal-test-p))) | 
|---|
| 193 | (make-poly-variable ring (length vars) pos))) | 
|---|
| 194 | ((free-of-vars expr vars) | 
|---|
| 195 | ;;This means that variable-free CRE and Poisson forms will be converted | 
|---|
| 196 | ;;to coefficients intact | 
|---|
| 197 | (coerce-coeff ring expr vars)) | 
|---|
| 198 | (t | 
|---|
| 199 | (case (caar expr) | 
|---|
| 200 | (mplus (reduce #'(lambda (x y) (poly-add ring-and-order x y)) (parse-list (cdr expr)))) | 
|---|
| 201 | (mminus (poly-uminus ring (parse (cadr expr)))) | 
|---|
| 202 | (mtimes | 
|---|
| 203 | (if (endp (cddr expr))         ;unary | 
|---|
| 204 | (parse (cdr expr)) | 
|---|
| 205 | (reduce #'(lambda (p q) (poly-mul ring-and-order p q)) (parse-list (cdr expr))))) | 
|---|
| 206 | (mexpt | 
|---|
| 207 | (cond | 
|---|
| 208 | ((member (cadr expr) vars :test #'equal-test-p) | 
|---|
| 209 | ;;Special handling of (expt var pow) | 
|---|
| 210 | (let ((pos (position (cadr expr) vars :test #'equal-test-p))) | 
|---|
| 211 | (make-poly-variable ring (length vars) pos (caddr expr)))) | 
|---|
| 212 | ((not (and (integerp (caddr expr)) (plusp (caddr expr)))) | 
|---|
| 213 | ;; Negative power means division in coefficient ring | 
|---|
| 214 | ;; Non-integer power means non-polynomial coefficient | 
|---|
| 215 | (mtell "~%Warning: Expression ~%~M~%contains power which is not a positive integer. Parsing as coefficient.~%" | 
|---|
| 216 | expr) | 
|---|
| 217 | (coerce-coeff ring expr vars)) | 
|---|
| 218 | (t (poly-expt ring-and-order (parse (cadr expr)) (caddr expr))))) | 
|---|
| 219 | (mrat (parse ($ratdisrep expr))) | 
|---|
| 220 | (mpois (parse ($outofpois expr))) | 
|---|
| 221 | (otherwise | 
|---|
| 222 | (coerce-coeff ring expr vars))))))) | 
|---|
| 223 |  | 
|---|
| 224 | (defun maxima->poly-list (expr vars | 
|---|
| 225 | &optional | 
|---|
| 226 | (ring-and-order (find-ring-and-order-by-name))) | 
|---|
| 227 | "Convert a Maxima representation of a list of polynomials to the internal form." | 
|---|
| 228 | (case (caar expr) | 
|---|
| 229 | (mlist (mapcar #'(lambda (p) | 
|---|
| 230 | (maxima->poly p vars ring-and-order)) | 
|---|
| 231 | (cdr expr))) | 
|---|
| 232 | (otherwise (merror "Expression ~M is not a list of polynomials in variables ~M." | 
|---|
| 233 | expr vars)))) | 
|---|
| 234 |  | 
|---|
| 235 | (defun maxima->poly-list-list (poly-list-of-lists vars | 
|---|
| 236 | &optional | 
|---|
| 237 | (ring-and-order (find-ring-and-order-by-name))) | 
|---|
| 238 | "Parse a Maxima representation of a list of lists of polynomials." | 
|---|
| 239 | (mapcar #'(lambda (g) (maxima->poly-list g vars ring-and-order)) | 
|---|
| 240 | (coerce-maxima-list poly-list-of-lists))) | 
|---|
| 241 |  | 
|---|
| 242 |  | 
|---|
| 243 |  | 
|---|
| 244 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
| 245 | ;; | 
|---|
| 246 | ;; Conversion from internal form to Maxima general form | 
|---|
| 247 | ;; | 
|---|
| 248 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
| 249 |  | 
|---|
| 250 | (defun maxima-head () | 
|---|
| 251 | (if $poly_return_term_list | 
|---|
| 252 | '(mlist) | 
|---|
| 253 | '(mplus))) | 
|---|
| 254 |  | 
|---|
| 255 | (defun poly->maxima (poly-type object vars) | 
|---|
| 256 | (case poly-type | 
|---|
| 257 | (:custom object)                    ;Bypass processing | 
|---|
| 258 | (:polynomial | 
|---|
| 259 | `(,(maxima-head) ,@(mapcar #'(lambda (term) (poly->maxima :term term vars)) (poly-termlist object)))) | 
|---|
| 260 | (:poly-list | 
|---|
| 261 | `((mlist) ,@(mapcar #'(lambda (p) ($ratdisrep (poly->maxima :polynomial p vars))) object))) | 
|---|
| 262 | (:term | 
|---|
| 263 | `((mtimes) ,($ratdisrep (term-coeff object)) | 
|---|
| 264 | ,@(mapcar | 
|---|
| 265 | #'(lambda (var power) `((mexpt) ,var ,power)) | 
|---|
| 266 | vars | 
|---|
| 267 | (monom->list (term-monom object))))) | 
|---|
| 268 | ;; Assumes that Lisp and Maxima logicals coincide | 
|---|
| 269 | (:logical object) | 
|---|
| 270 | (otherwise object))) | 
|---|
| 271 |  | 
|---|
| 272 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
| 273 | ;; | 
|---|
| 274 | ;; Macro facility for writing Maxima-level wrappers for | 
|---|
| 275 | ;; functions operating on internal representation. | 
|---|
| 276 | ;; | 
|---|
| 277 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
| 278 |  | 
|---|
| 279 | (defmacro with-ring-and-order (((maxima-vars &optional (maxima-new-vars nil new-vars-supplied-p)) | 
|---|
| 280 | &key | 
|---|
| 281 | (polynomials nil) | 
|---|
| 282 | (poly-lists nil) | 
|---|
| 283 | (poly-list-lists nil) | 
|---|
| 284 | (value-type nil) | 
|---|
| 285 | (ring-and-order-var 'ring-and-order) | 
|---|
| 286 | (ring-var 'ring)) | 
|---|
| 287 | &body | 
|---|
| 288 | body | 
|---|
| 289 | &aux | 
|---|
| 290 | (vars (gensym)) | 
|---|
| 291 | (new-vars (gensym))) | 
|---|
| 292 | "Evaluate a polynomial expression BODY in an environment | 
|---|
| 293 | constructred from Maxima switches.  The supplied arguments | 
|---|
| 294 | POLYNOMIALS, POLY-LISTS and POLY-LIST-LISTS should be polynomials, | 
|---|
| 295 | polynomial lists an lists of lists of polynomials, in Maxima general | 
|---|
| 296 | form. These are translated to NGROBNER package internal form and | 
|---|
| 297 | evaluated using operations in the NGROBNER package. The BODY should be | 
|---|
| 298 | defined in terms of those operations. MAXIMA-VARS is set to the list | 
|---|
| 299 | of variable names used at the Maxima level. The evaluation is | 
|---|
| 300 | performed by the NGROBNER package which ignores variable names, thus | 
|---|
| 301 | MAXIMA-VARS is used only to translate the polynomial expression to | 
|---|
| 302 | NGROBNER internal form. After evaluation, the value of BODY is | 
|---|
| 303 | translated back to the Maxima general form. When MAXIMA-NEW-VARS is | 
|---|
| 304 | present, it is appended to MAXIMA-VARS upon translation from the | 
|---|
| 305 | internal form back to Maxima general form, thus allowing extra | 
|---|
| 306 | variables which may have been created by the evaluation process.  The | 
|---|
| 307 | value type can be either :POLYNOMIAL, :POLY-LIST or :TERM, depending | 
|---|
| 308 | on the form of the result returned by the top NGROBNER operation. | 
|---|
| 309 | During evaluation, symbols supplied by RING-AND-ORDER-VAR (defaul | 
|---|
| 310 | value 'RING-AND-ORDER), and RING-VAR (default value 'RING) are bound | 
|---|
| 311 | to RING-AND-ORDER and RING instances." | 
|---|
| 312 | `(let ((,vars (coerce-maxima-list ,maxima-vars)) | 
|---|
| 313 | ,@(when new-vars-supplied-p | 
|---|
| 314 | (list `(,new-vars (coerce-maxima-list ,maxima-new-vars))))) | 
|---|
| 315 | (poly->maxima | 
|---|
| 316 | ,value-type | 
|---|
| 317 | (let ((,ring-and-order-var ,(find-ring-and-order-by-name))) | 
|---|
| 318 | ;; Define a shorthand to RING | 
|---|
| 319 | (symbol-macrolet ((,ring-var (ro-ring ring-and-order))) | 
|---|
| 320 | (let ,(let ((args nil)) | 
|---|
| 321 | (dolist (p polynomials args) | 
|---|
| 322 | (setf args (cons `(,p (maxima->poly ,p ,vars ,ring-and-order-var)) args))) | 
|---|
| 323 | (dolist (p poly-lists args) | 
|---|
| 324 | (setf args (cons `(,p (maxima->poly-list ,p ,vars ,ring-and-order-var)) args))) | 
|---|
| 325 | (dolist (p poly-list-lists args) | 
|---|
| 326 | (setf args (cons `(,p (maxima->poly-list-list ,p ,vars ,ring-and-order-var)) args)))) | 
|---|
| 327 | . ,body))) | 
|---|
| 328 | ,(if new-vars-supplied-p | 
|---|
| 329 | `(append ,vars ,new-vars) | 
|---|
| 330 | vars)))) | 
|---|
| 331 |  | 
|---|
| 332 |  | 
|---|
| 333 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
| 334 | ;; | 
|---|
| 335 | ;; N-ary (unary and binary) operation definition facility | 
|---|
| 336 | ;; | 
|---|
| 337 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
| 338 |  | 
|---|
| 339 | (defmacro define-op (maxima-name               ;Name of maxima level function | 
|---|
| 340 | (fun-name env &rest args) ;Lisp level form to evaluate | 
|---|
| 341 | &optional | 
|---|
| 342 | (documentation nil documentation-supplied-p) | 
|---|
| 343 | &aux | 
|---|
| 344 | ;; The argument passed as first arg | 
|---|
| 345 | (env-arg (ecase env | 
|---|
| 346 | (:ring-and-order 'ring-and-order) | 
|---|
| 347 | (:ring 'ring)))) | 
|---|
| 348 | "Define a MAXIMA-level unary operator MAXIMA-NAME corresponding to unary function FUN-NAME. | 
|---|
| 349 | The second argument should be :RING or :RING-AND-ORDER, and it signals | 
|---|
| 350 | the type of the first argument that should be passed to function | 
|---|
| 351 | FUN-NAME. ARGS is a list of formal parameters passed to the function, | 
|---|
| 352 | i.e. symbols used as arguments. The macro expands to a Maxima-level | 
|---|
| 353 | function definition with name MAXIMA-NAME, which wraps FUN-NAME." | 
|---|
| 354 | `(defmfun ,maxima-name (,@args vars) | 
|---|
| 355 | ,@(when documentation-supplied-p (list documentation)) | 
|---|
| 356 | (with-ring-and-order ((vars) :polynomials (,@args) :value-type :polynomial) | 
|---|
| 357 | (,fun-name ,env-arg ,@args)))) | 
|---|
| 358 |  | 
|---|
| 359 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
| 360 | ;; | 
|---|
| 361 | ;; Maxima-level interface functions | 
|---|
| 362 | ;; | 
|---|
| 363 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
| 364 |  | 
|---|
| 365 | ;; Auxillary function for removing zero polynomial | 
|---|
| 366 | (defun remzero (plist) (remove #'poly-zerop plist)) | 
|---|
| 367 |  | 
|---|
| 368 | ;;Simple operators | 
|---|
| 369 | (define-op $poly_add (poly-add :ring-and-order p q) | 
|---|
| 370 | "Adds two polynomials P and Q") | 
|---|
| 371 |  | 
|---|
| 372 | (define-op $poly_subtract (poly-sub :ring-and-order p q) | 
|---|
| 373 | "Subtracts a polynomial Q from P.") | 
|---|
| 374 |  | 
|---|
| 375 | (define-op $poly_multiply (poly-mul :ring-and-order p q) | 
|---|
| 376 | "Returns the product of polynomials P and Q.") | 
|---|
| 377 |  | 
|---|
| 378 | (define-op $poly_s_polynomial (spoly :ring-and-order p q) | 
|---|
| 379 | "Returns the syzygy polynomial (S-polynomial) of two polynomials P and Q.") | 
|---|
| 380 |  | 
|---|
| 381 | (define-op $poly_primitive_part (poly-primitive-part :ring p) | 
|---|
| 382 | "Returns the polynomial P divided by GCD of its coefficients.") | 
|---|
| 383 |  | 
|---|
| 384 | (define-op $poly_normalize (poly-normalize :ring p) | 
|---|
| 385 | "Returns the polynomial P divided by the leading coefficient.") | 
|---|
| 386 |  | 
|---|
| 387 |  | 
|---|
| 388 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
| 389 | ;; | 
|---|
| 390 | ;;    More complex functions | 
|---|
| 391 | ;; | 
|---|
| 392 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | 
|---|
| 393 |  | 
|---|
| 394 | (defmfun $poly_expand (p vars) | 
|---|
| 395 | "This function is equivalent to EXPAND(P) if P parses correctly to a polynomial. | 
|---|
| 396 | If the representation is not compatible with a polynomial in variables VARS, | 
|---|
| 397 | the result is an error." | 
|---|
| 398 | (with-ring-and-order ((vars) :polynomials (p) :value-type :polynomial) p)) | 
|---|
| 399 |  | 
|---|
| 400 |  | 
|---|
| 401 | (defmfun $poly_expt (p n vars) | 
|---|
| 402 | (with-ring-and-order ((vars) :polynomials (p) :value-type :polynomial) | 
|---|
| 403 | (poly-expt ring-and-order p n))) | 
|---|
| 404 |  | 
|---|
| 405 | (defmfun $poly_content (p vars) | 
|---|
| 406 | (with-ring-and-order ((vars) :polynomials (p)) | 
|---|
| 407 | (poly-content ring p))) | 
|---|
| 408 |  | 
|---|
| 409 | (defmfun $poly_pseudo_divide (f fl mvars &aux (vars (coerce-maxima-list mvars))) | 
|---|
| 410 | (with-ring-and-order ((mvars) | 
|---|
| 411 | :polynomials (f) | 
|---|
| 412 | :poly-lists (fl) | 
|---|
| 413 | :value-type :custom) | 
|---|
| 414 | (multiple-value-bind (quot rem c division-count) | 
|---|
| 415 | (poly-pseudo-divide ring-and-order f fl) | 
|---|
| 416 | `((mlist) | 
|---|
| 417 | ,(poly->maxima :poly-list quot vars) | 
|---|
| 418 | ,(poly->maxima :polynomial rem vars) | 
|---|
| 419 | ,c | 
|---|
| 420 | ,division-count)))) | 
|---|
| 421 |  | 
|---|
| 422 | (defmfun $poly_exact_divide (f g vars) | 
|---|
| 423 | (with-ring-and-order ((vars) :polynomials (f g) :value-type :polynomial) | 
|---|
| 424 | (poly-exact-divide ring-and-order f g))) | 
|---|
| 425 |  | 
|---|
| 426 | (defmfun $poly_normal_form (f fl vars) | 
|---|
| 427 | (with-ring-and-order ((vars) :polynomials (f) | 
|---|
| 428 | :poly-lists (fl) | 
|---|
| 429 | :value-type :polynomial) | 
|---|
| 430 | (normal-form ring-and-order f (remzero fl) nil))) | 
|---|
| 431 |  | 
|---|
| 432 | (defmfun $poly_buchberger_criterion (g vars) | 
|---|
| 433 | (with-ring-and-order ((vars) :poly-lists (g) :value-type :logical) | 
|---|
| 434 | (buchberger-criterion ring-and-order g))) | 
|---|
| 435 |  | 
|---|
| 436 | (defmfun $poly_buchberger (fl vars) | 
|---|
| 437 | (with-ring-and-order ((vars) :poly-lists (fl) :value-type :poly-list) | 
|---|
| 438 | (buchberger ring-and-order  (remzero fl) 0 nil))) | 
|---|
| 439 |  | 
|---|
| 440 | (defmfun $poly_reduction (plist vars) | 
|---|
| 441 | (with-ring-and-order ((vars) :poly-lists (plist) | 
|---|
| 442 | :value-type :poly-list) | 
|---|
| 443 | (reduction ring-and-order plist))) | 
|---|
| 444 |  | 
|---|
| 445 | (defmfun $poly_minimization (plist vars) | 
|---|
| 446 | (with-ring-and-order ((vars) :poly-lists (plist) | 
|---|
| 447 | :value-type :poly-list) | 
|---|
| 448 | (minimization plist))) | 
|---|
| 449 |  | 
|---|
| 450 | (defmfun $poly_normalize_list (plist vars) | 
|---|
| 451 | (with-ring-and-order ((vars) :poly-lists (plist) | 
|---|
| 452 | :value-type :poly-list) | 
|---|
| 453 | (poly-normalize-list ring plist))) | 
|---|
| 454 |  | 
|---|
| 455 | (defmfun $poly_grobner (f vars) | 
|---|
| 456 | (with-ring-and-order ((vars) :poly-lists (f) | 
|---|
| 457 | :value-type :poly-list) | 
|---|
| 458 | (grobner ring-and-order (remzero f)))) | 
|---|
| 459 |  | 
|---|
| 460 | (defmfun $poly_reduced_grobner (f vars) | 
|---|
| 461 | (with-ring-and-order ((vars) :poly-lists (f) | 
|---|
| 462 | :value-type :poly-list) | 
|---|
| 463 | (reduced-grobner ring-and-order (remzero f)))) | 
|---|
| 464 |  | 
|---|
| 465 | (defmfun $poly_depends_p (p var mvars | 
|---|
| 466 | &aux | 
|---|
| 467 | (vars (coerce-maxima-list mvars)) | 
|---|
| 468 | (pos (position var vars))) | 
|---|
| 469 | (with-ring-and-order ((mvars) :polynomials (p) :value-type :custom) | 
|---|
| 470 | (if (null pos) | 
|---|
| 471 | (merror "~%Variable ~M not in the list of variables ~M." var mvars) | 
|---|
| 472 | (poly-depends-p p pos)))) | 
|---|
| 473 |  | 
|---|
| 474 | (defmfun $poly_elimination_ideal (flist k vars) | 
|---|
| 475 | (with-ring-and-order ((vars) :poly-lists (flist) | 
|---|
| 476 | :value-type :poly-list) | 
|---|
| 477 | (elimination-ideal ring-and-order flist k nil 0))) | 
|---|
| 478 |  | 
|---|
| 479 | (defmfun $poly_colon_ideal (f g vars) | 
|---|
| 480 | (with-ring-and-order ((vars) :poly-lists (f g) :value-type :poly-list) | 
|---|
| 481 | (colon-ideal ring-and-order f g nil))) | 
|---|
| 482 |  | 
|---|
| 483 | (defmfun $poly_ideal_intersection (f g vars) | 
|---|
| 484 | (with-ring-and-order ((vars) :poly-lists (f g) :value-type :poly-list) | 
|---|
| 485 | (ideal-intersection ring-and-order f g nil))) | 
|---|
| 486 |  | 
|---|
| 487 | (defmfun $poly_lcm (f g vars) | 
|---|
| 488 | (with-ring-and-order ((vars) :polynomials (f g) :value-type :polynomial) | 
|---|
| 489 | (poly-lcm ring-and-order f g))) | 
|---|
| 490 |  | 
|---|
| 491 | (defmfun $poly_gcd (f g vars) | 
|---|
| 492 | ($first ($divide (m* f g) ($poly_lcm f g vars)))) | 
|---|
| 493 |  | 
|---|
| 494 | (defmfun $poly_grobner_equal (g1 g2 vars) | 
|---|
| 495 | (with-ring-and-order ((vars) :poly-lists (g1 g2)) | 
|---|
| 496 | (grobner-equal ring-and-order g1 g2))) | 
|---|
| 497 |  | 
|---|
| 498 | (defmfun $poly_grobner_subsetp (g1 g2 vars) | 
|---|
| 499 | (with-ring-and-order ((vars) :poly-lists (g1 g2)) | 
|---|
| 500 | (grobner-subsetp ring-and-order g1 g2))) | 
|---|
| 501 |  | 
|---|
| 502 | (defmfun $poly_grobner_member (p g vars) | 
|---|
| 503 | (with-ring-and-order ((vars) :polynomials (p) :poly-lists (g)) | 
|---|
| 504 | (grobner-member ring-and-order p g))) | 
|---|
| 505 |  | 
|---|
| 506 | (defmfun $poly_ideal_saturation1 (f p vars) | 
|---|
| 507 | (with-ring-and-order ((vars) :poly-lists (f) :polynomials (p) | 
|---|
| 508 | :value-type :poly-list) | 
|---|
| 509 | (ideal-saturation-1 ring-and-order f p 0))) | 
|---|
| 510 |  | 
|---|
| 511 | (defmfun $poly_saturation_extension (f plist vars new-vars) | 
|---|
| 512 | (with-ring-and-order ((vars new-vars) | 
|---|
| 513 | :poly-lists (f plist) | 
|---|
| 514 | :value-type :poly-list) | 
|---|
| 515 | (saturation-extension ring f plist))) | 
|---|
| 516 |  | 
|---|
| 517 | (defmfun $poly_polysaturation_extension (f plist vars new-vars) | 
|---|
| 518 | (with-ring-and-order ((vars new-vars) | 
|---|
| 519 | :poly-lists (f plist) | 
|---|
| 520 | :value-type :poly-list) | 
|---|
| 521 | (polysaturation-extension ring f plist))) | 
|---|
| 522 |  | 
|---|
| 523 | (defmfun $poly_ideal_polysaturation1 (f plist vars) | 
|---|
| 524 | (with-ring-and-order ((vars) :poly-lists (f plist) | 
|---|
| 525 | :value-type :poly-list) | 
|---|
| 526 | (ideal-polysaturation-1 ring-and-order f plist 0 nil))) | 
|---|
| 527 |  | 
|---|
| 528 | (defmfun $poly_ideal_saturation (f g vars) | 
|---|
| 529 | (with-ring-and-order ((vars) :poly-lists (f g) | 
|---|
| 530 | :value-type  :poly-list) | 
|---|
| 531 | (ideal-saturation ring-and-order f g 0 nil))) | 
|---|
| 532 |  | 
|---|
| 533 | (defmfun $poly_ideal_polysaturation (f ideal-list vars) | 
|---|
| 534 | (with-ring-and-order ((vars) :poly-lists (f) | 
|---|
| 535 | :poly-list-lists (ideal-list) | 
|---|
| 536 | :value-type :poly-list) | 
|---|
| 537 | (ideal-polysaturation ring-and-order f ideal-list 0 nil))) | 
|---|
| 538 |  | 
|---|
| 539 | (defmfun $poly_lt (f vars) | 
|---|
| 540 | (with-ring-and-order ((vars) :polynomials (f) :value-type :polynomial) | 
|---|
| 541 | (make-poly-from-termlist (list (poly-lt f))))) | 
|---|
| 542 |  | 
|---|
| 543 | (defmfun $poly_lm (f vars) | 
|---|
| 544 | (with-ring-and-order ((vars) :polynomials (f) :value-type :polynomial) | 
|---|
| 545 | (make-poly-from-termlist (list (make-term :monom (poly-lm f) :coeff (funcall (ring-unit ring))))))) | 
|---|