| 1 | ;;; -*- Mode: Lisp -*-
|
---|
| 2 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 3 | ;;;
|
---|
| 4 | ;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
|
---|
| 5 | ;;;
|
---|
| 6 | ;;; This program is free software; you can redistribute it and/or modify
|
---|
| 7 | ;;; it under the terms of the GNU General Public License as published by
|
---|
| 8 | ;;; the Free Software Foundation; either version 2 of the License, or
|
---|
| 9 | ;;; (at your option) any later version.
|
---|
| 10 | ;;;
|
---|
| 11 | ;;; This program is distributed in the hope that it will be useful,
|
---|
| 12 | ;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 13 | ;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 14 | ;;; GNU General Public License for more details.
|
---|
| 15 | ;;;
|
---|
| 16 | ;;; You should have received a copy of the GNU General Public License
|
---|
| 17 | ;;; along with this program; if not, write to the Free Software
|
---|
| 18 | ;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
---|
| 19 | ;;;
|
---|
| 20 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 21 |
|
---|
| 22 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 23 | ;;
|
---|
| 24 | ;; Load this file into Maxima to bootstrap the Grobner package.
|
---|
| 25 | ;; NOTE: This file does use symbols defined by Maxima, so it
|
---|
| 26 | ;; will not work when loaded in Common Lisp.
|
---|
| 27 | ;;
|
---|
| 28 | ;; DETAILS: This file implements an interface between the Grobner
|
---|
| 29 | ;; basis package NGROBNER, which is a pure Common Lisp package, and
|
---|
| 30 | ;; Maxima. NGROBNER for efficiency uses its own representation of
|
---|
| 31 | ;; polynomials. Thus, it is necessary to convert Maxima representation
|
---|
| 32 | ;; to the internal representation and back. The facilities to do so
|
---|
| 33 | ;; are implemented in this file.
|
---|
| 34 | ;;
|
---|
| 35 | ;; Also, since the NGROBNER package consists of many Lisp files, it is
|
---|
| 36 | ;; necessary to load the files. It is possible and preferrable to use
|
---|
| 37 | ;; ASDF for this purpose. The default is ASDF. It is also possible to
|
---|
| 38 | ;; simply used LOAD and COMPILE-FILE to accomplish this task.
|
---|
| 39 | ;;
|
---|
| 40 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 41 |
|
---|
| 42 | (in-package :maxima)
|
---|
| 43 |
|
---|
| 44 | (macsyma-module cgb-maxima)
|
---|
| 45 |
|
---|
| 46 |
|
---|
| 47 | (eval-when
|
---|
| 48 | #+gcl (load eval)
|
---|
| 49 | #-gcl (:load-toplevel :execute)
|
---|
| 50 | (format t "~&Loading maxima-grobner ~a ~a~%"
|
---|
| 51 | "$Revision: 2.0 $" "$Date: 2015/06/02 0:34:17 $"))
|
---|
| 52 |
|
---|
| 53 | ;;FUNCTS is loaded because it contains the definition of LCM
|
---|
| 54 | ($load "functs")
|
---|
| 55 | #+sbcl(progn (require 'asdf) (load "ngrobner.asd")(asdf:load-system :ngrobner))
|
---|
| 56 |
|
---|
| 57 | (use-package :ngrobner)
|
---|
| 58 |
|
---|
| 59 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 60 | ;;
|
---|
| 61 | ;; Global switches
|
---|
| 62 | ;;
|
---|
| 63 | ;; Can be used in Maxima just fine, as they observe the
|
---|
| 64 | ;; Maxima naming convention, i.e. all names visible at the
|
---|
| 65 | ;; Maxima toplevel begin with a '$'.
|
---|
| 66 | ;;
|
---|
| 67 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 68 |
|
---|
| 69 | (defvar $poly_monomial_order '$lex
|
---|
| 70 | "This switch controls which monomial order is used in polynomial
|
---|
| 71 | and Grobner basis calculations. If not set, LEX will be used")
|
---|
| 72 |
|
---|
| 73 | (defvar $poly_coefficient_ring '$expression_ring
|
---|
| 74 | "This switch indicates the coefficient ring of the polynomials
|
---|
| 75 | that will be used in grobner calculations. If not set, Maxima's
|
---|
| 76 | general expression ring will be used. This variable may be set
|
---|
| 77 | to RING_OF_INTEGERS if desired.")
|
---|
| 78 |
|
---|
| 79 | (defvar $poly_primary_elimination_order nil
|
---|
| 80 | "Name of the default order for eliminated variables in elimination-based functions.
|
---|
| 81 | If not set, LEX will be used.")
|
---|
| 82 |
|
---|
| 83 | (defvar $poly_secondary_elimination_order nil
|
---|
| 84 | "Name of the default order for kept variables in elimination-based functions.
|
---|
| 85 | If not set, LEX will be used.")
|
---|
| 86 |
|
---|
| 87 | (defvar $poly_elimination_order nil
|
---|
| 88 | "Name of the default elimination order used in elimination calculations.
|
---|
| 89 | If set, it overrides the settings in variables POLY_PRIMARY_ELIMINATION_ORDER
|
---|
| 90 | and SECONDARY_ELIMINATION_ORDER. The user must ensure that this is a true
|
---|
| 91 | elimination order valid for the number of eliminated variables.")
|
---|
| 92 |
|
---|
| 93 | (defvar $poly_return_term_list nil
|
---|
| 94 | "If set to T, all functions in this package will return each polynomial as a
|
---|
| 95 | list of terms in the current monomial order rather than a Maxima general expression.")
|
---|
| 96 |
|
---|
| 97 |
|
---|
| 98 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 99 | ;;
|
---|
| 100 | ;; Maxima expression ring
|
---|
| 101 | ;;
|
---|
| 102 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 103 | ;;
|
---|
| 104 | ;; This is how we perform operations on coefficients
|
---|
| 105 | ;; using Maxima functions.
|
---|
| 106 | ;;
|
---|
| 107 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 108 |
|
---|
| 109 | (defparameter +maxima-ring+
|
---|
| 110 | (make-ring
|
---|
| 111 | ;;(defun coeff-zerop (expr) (meval1 `(($is) (($equal) ,expr 0))))
|
---|
| 112 | :parse #'(lambda (expr)
|
---|
| 113 | (when modulus (setf expr ($rat expr)))
|
---|
| 114 | expr)
|
---|
| 115 | :unit #'(lambda () (if modulus ($rat 1) 1))
|
---|
| 116 | :zerop #'(lambda (expr)
|
---|
| 117 | ;;When is exactly a maxima expression equal to 0?
|
---|
| 118 | (cond ((numberp expr)
|
---|
| 119 | (= expr 0))
|
---|
| 120 | ((atom expr) nil)
|
---|
| 121 | (t
|
---|
| 122 | (case (caar expr)
|
---|
| 123 | (mrat (eql ($ratdisrep expr) 0))
|
---|
| 124 | (otherwise (eql ($totaldisrep expr) 0))))))
|
---|
| 125 | :add #'(lambda (x y) (m+ x y))
|
---|
| 126 | :sub #'(lambda (x y) (m- x y))
|
---|
| 127 | :uminus #'(lambda (x) (m- x))
|
---|
| 128 | :mul #'(lambda (x y) (m* x y))
|
---|
| 129 | ;;(defun coeff-div (x y) (cadr ($divide x y)))
|
---|
| 130 | :div #'(lambda (x y) (m// x y))
|
---|
| 131 | :lcm #'(lambda (x y) (meval1 `((|$LCM|) ,x ,y)))
|
---|
| 132 | :ezgcd #'(lambda (x y) (apply #'values (cdr ($ezgcd ($totaldisrep x) ($totaldisrep y)))))
|
---|
| 133 | ;; :gcd #'(lambda (x y) (second ($ezgcd x y)))))
|
---|
| 134 | :gcd #'(lambda (x y) ($gcd x y))))
|
---|
| 135 |
|
---|
| 136 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 137 | ;;
|
---|
| 138 | ;; Maxima expression parsing
|
---|
| 139 | ;;
|
---|
| 140 | ;;
|
---|
| 141 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 142 | ;;
|
---|
| 143 | ;; Functions and macros dealing with internal representation
|
---|
| 144 | ;; structure.
|
---|
| 145 | ;;
|
---|
| 146 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 147 |
|
---|
| 148 | (defun equal-test-p (expr1 expr2)
|
---|
| 149 | (alike1 expr1 expr2))
|
---|
| 150 |
|
---|
| 151 | (defun coerce-maxima-list (expr)
|
---|
| 152 | "Convert a Maxima list to Lisp list."
|
---|
| 153 | (cond
|
---|
| 154 | ((and (consp (car expr)) (eql (caar expr) 'mlist)) (cdr expr))
|
---|
| 155 | (t expr)))
|
---|
| 156 |
|
---|
| 157 | (defun free-of-vars (expr vars) (apply #'$freeof `(,@vars ,expr)))
|
---|
| 158 |
|
---|
| 159 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 160 | ;;
|
---|
| 161 | ;; Order utilities
|
---|
| 162 | ;;
|
---|
| 163 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 164 |
|
---|
| 165 | (defun find-ring-by-name (ring)
|
---|
| 166 | "This function returns the ring structure bases on input symbol."
|
---|
| 167 | (cond
|
---|
| 168 | ((null ring) nil)
|
---|
| 169 | ((symbolp ring)
|
---|
| 170 | (case ring
|
---|
| 171 | ((maxima-ring :maxima-ring #:maxima-ring $expression_ring #:expression_ring)
|
---|
| 172 | +maxima-ring+)
|
---|
| 173 | ((ring-of-integers :ring-of-integers #:ring-of-integers $ring_of_integers) +ring-of-integers+)
|
---|
| 174 | (otherwise
|
---|
| 175 | (mtell "~%Warning: Ring ~M not found. Using default.~%" ring))))
|
---|
| 176 | (t
|
---|
| 177 | (mtell "~%Ring specification ~M is not recognized. Using default.~%" ring)
|
---|
| 178 | nil)))
|
---|
| 179 |
|
---|
| 180 | (defun find-order-by-name (order)
|
---|
| 181 | "This function returns the order function bases on its name."
|
---|
| 182 | (cond
|
---|
| 183 | ((null order) nil)
|
---|
| 184 | ((symbolp order)
|
---|
| 185 | (case order
|
---|
| 186 | ((lex :lex $lex #:lex)
|
---|
| 187 | #'lex>)
|
---|
| 188 | ((grlex :grlex $grlex #:grlex)
|
---|
| 189 | #'grlex>)
|
---|
| 190 | ((grevlex :grevlex $grevlex #:grevlex)
|
---|
| 191 | #'grevlex>)
|
---|
| 192 | ((invlex :invlex $invlex #:invlex)
|
---|
| 193 | #'invlex>)
|
---|
| 194 | (otherwise
|
---|
| 195 | (mtell "~%Warning: Order ~M not found. Using default.~%" order))))
|
---|
| 196 | (t
|
---|
| 197 | (mtell "~%Order specification ~M is not recognized. Using default.~%" order)
|
---|
| 198 | nil)))
|
---|
| 199 |
|
---|
| 200 | (defun find-ring-and-order-by-name (&optional
|
---|
| 201 | (ring (find-ring-by-name $poly_coefficient_ring))
|
---|
| 202 | (order (find-order-by-name $poly_monomial_order))
|
---|
| 203 | (primary-elimination-order (find-order-by-name $poly_primary_elimination_order))
|
---|
| 204 | (secondary-elimination-order (find-order-by-name $poly_secondary_elimination_order))
|
---|
| 205 | &aux
|
---|
| 206 | (ring-and-order (make-ring-and-order
|
---|
| 207 | :ring ring
|
---|
| 208 | :order order
|
---|
| 209 | :primary-elimination-order primary-elimination-order
|
---|
| 210 | :secondary-elimination-order secondary-elimination-order)))
|
---|
| 211 | "Build RING-AND-ORDER structure. The defaults are determined by various Maxima-level switches,
|
---|
| 212 | which are names of ring and orders."
|
---|
| 213 | ring-and-order)
|
---|
| 214 |
|
---|
| 215 | (defun maxima->poly (expr vars
|
---|
| 216 | &optional
|
---|
| 217 | (ring-and-order (find-ring-and-order-by-name))
|
---|
| 218 | &aux
|
---|
| 219 | (vars (coerce-maxima-list vars))
|
---|
| 220 | (ring (ro-ring ring-and-order)))
|
---|
| 221 | "Convert a maxima polynomial expression EXPR in variables VARS to
|
---|
| 222 | internal form. This works by first converting the expression to Lisp,
|
---|
| 223 | and then evaluating the expression using polynomial arithmetic
|
---|
| 224 | implemented by the POLYNOMIAL package."
|
---|
| 225 | (declare (type ring-and-order ring-and-order))
|
---|
| 226 | (labels ((parse (arg) (maxima->poly arg vars ring-and-order))
|
---|
| 227 | (parse-list (args) (mapcar #'parse args)))
|
---|
| 228 | (cond
|
---|
| 229 | ((eql expr 0) (make-poly-zero))
|
---|
| 230 | ((member expr vars :test #'equal-test-p)
|
---|
| 231 | (let ((pos (position expr vars :test #'equal-test-p)))
|
---|
| 232 | (make-poly-variable ring (length vars) pos)))
|
---|
| 233 | ((free-of-vars expr vars)
|
---|
| 234 | ;;This means that variable-free CRE and Poisson forms will be converted
|
---|
| 235 | ;;to coefficients intact
|
---|
| 236 | (coerce-coeff ring expr vars))
|
---|
| 237 | (t
|
---|
| 238 | (case (caar expr)
|
---|
| 239 | (mplus (reduce #'(lambda (x y) (poly-add ring-and-order x y)) (parse-list (cdr expr))))
|
---|
| 240 | (mminus (poly-uminus ring (parse (cadr expr))))
|
---|
| 241 | (mtimes
|
---|
| 242 | (if (endp (cddr expr)) ;unary
|
---|
| 243 | (parse (cdr expr))
|
---|
| 244 | (reduce #'(lambda (p q) (poly-mul ring-and-order p q)) (parse-list (cdr expr)))))
|
---|
| 245 | (mexpt
|
---|
| 246 | (cond
|
---|
| 247 | ((member (cadr expr) vars :test #'equal-test-p)
|
---|
| 248 | ;;Special handling of (expt var pow)
|
---|
| 249 | (let ((pos (position (cadr expr) vars :test #'equal-test-p)))
|
---|
| 250 | (make-poly-variable ring (length vars) pos (caddr expr))))
|
---|
| 251 | ((not (and (integerp (caddr expr)) (plusp (caddr expr))))
|
---|
| 252 | ;; Negative power means division in coefficient ring
|
---|
| 253 | ;; Non-integer power means non-polynomial coefficient
|
---|
| 254 | (mtell "~%Warning: Expression ~%~M~%contains power which is not a positive integer. Parsing as coefficient.~%"
|
---|
| 255 | expr)
|
---|
| 256 | (coerce-coeff ring expr vars))
|
---|
| 257 | (t (poly-expt ring-and-order (parse (cadr expr)) (caddr expr)))))
|
---|
| 258 | (mrat (parse ($ratdisrep expr)))
|
---|
| 259 | (mpois (parse ($outofpois expr)))
|
---|
| 260 | (otherwise
|
---|
| 261 | (coerce-coeff ring expr vars)))))))
|
---|
| 262 |
|
---|
| 263 | (defun maxima->poly-list (expr vars
|
---|
| 264 | &optional
|
---|
| 265 | (ring-and-order (find-ring-and-order-by-name)))
|
---|
| 266 | "Convert a Maxima representation of a list of polynomials to the internal form."
|
---|
| 267 | (declare (type ring-and-order ring-and-order))
|
---|
| 268 | (case (caar expr)
|
---|
| 269 | (mlist (mapcar #'(lambda (p)
|
---|
| 270 | (maxima->poly p vars ring-and-order))
|
---|
| 271 | (cdr expr)))
|
---|
| 272 | (otherwise (merror "Expression ~M is not a list of polynomials in variables ~M."
|
---|
| 273 | expr vars))))
|
---|
| 274 |
|
---|
| 275 | (defun maxima->poly-list-list (poly-list-of-lists vars
|
---|
| 276 | &optional
|
---|
| 277 | (ring-and-order (find-ring-and-order-by-name)))
|
---|
| 278 | "Parse a Maxima representation of a list of lists of polynomials."
|
---|
| 279 | (mapcar #'(lambda (g) (maxima->poly-list g vars ring-and-order))
|
---|
| 280 | (coerce-maxima-list poly-list-of-lists)))
|
---|
| 281 |
|
---|
| 282 |
|
---|
| 283 |
|
---|
| 284 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 285 | ;;
|
---|
| 286 | ;; Conversion from internal form to Maxima general form
|
---|
| 287 | ;;
|
---|
| 288 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 289 |
|
---|
| 290 | (defun maxima-head ()
|
---|
| 291 | (if $poly_return_term_list
|
---|
| 292 | '(mlist)
|
---|
| 293 | '(mplus)))
|
---|
| 294 |
|
---|
| 295 | (defun poly->maxima (poly-type object vars)
|
---|
| 296 | (case poly-type
|
---|
| 297 | (:custom object) ;Bypass processing
|
---|
| 298 | (:polynomial
|
---|
| 299 | `(,(maxima-head) ,@(mapcar #'(lambda (term) (poly->maxima :term term vars)) (poly-termlist object))))
|
---|
| 300 | (:poly-list
|
---|
| 301 | `((mlist) ,@(mapcar #'(lambda (p) ($ratdisrep (poly->maxima :polynomial p vars))) object)))
|
---|
| 302 | (:term
|
---|
| 303 | `((mtimes) ,($ratdisrep (term-coeff object))
|
---|
| 304 | ,@(mapcar
|
---|
| 305 | #'(lambda (var power) `((mexpt) ,var ,power))
|
---|
| 306 | vars
|
---|
| 307 | (monom->list (term-monom object)))))
|
---|
| 308 | ;; Assumes that Lisp and Maxima logicals coincide
|
---|
| 309 | (:logical object)
|
---|
| 310 | (otherwise object)))
|
---|
| 311 |
|
---|
| 312 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 313 | ;;
|
---|
| 314 | ;; Macro facility for writing Maxima-level wrappers for
|
---|
| 315 | ;; functions operating on internal representation.
|
---|
| 316 | ;;
|
---|
| 317 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 318 |
|
---|
| 319 | (defmacro with-ring-and-order (((maxima-vars &optional (maxima-new-vars nil new-vars-supplied-p))
|
---|
| 320 | &key
|
---|
| 321 | (polynomials nil)
|
---|
| 322 | (poly-lists nil)
|
---|
| 323 | (poly-list-lists nil)
|
---|
| 324 | (value-type nil)
|
---|
| 325 | (ring-and-order-var 'ring-and-order)
|
---|
| 326 | (ring-var 'ring))
|
---|
| 327 | &body
|
---|
| 328 | body
|
---|
| 329 | &aux
|
---|
| 330 | (vars (gensym))
|
---|
| 331 | (new-vars (gensym)))
|
---|
| 332 | "Evaluate a polynomial expression BODY in an environment
|
---|
| 333 | constructred from Maxima switches. The supplied arguments
|
---|
| 334 | POLYNOMIALS, POLY-LISTS and POLY-LIST-LISTS should be polynomials,
|
---|
| 335 | polynomial lists an lists of lists of polynomials, in Maxima general
|
---|
| 336 | form. These are translated to NGROBNER package internal form and
|
---|
| 337 | evaluated using operations in the NGROBNER package. The BODY should be
|
---|
| 338 | defined in terms of those operations. MAXIMA-VARS is set to the list
|
---|
| 339 | of variable names used at the Maxima level. The evaluation is
|
---|
| 340 | performed by the NGROBNER package which ignores variable names, thus
|
---|
| 341 | MAXIMA-VARS is used only to translate the polynomial expression to
|
---|
| 342 | NGROBNER internal form. After evaluation, the value of BODY is
|
---|
| 343 | translated back to the Maxima general form. When MAXIMA-NEW-VARS is
|
---|
| 344 | present, it is appended to MAXIMA-VARS upon translation from the
|
---|
| 345 | internal form back to Maxima general form, thus allowing extra
|
---|
| 346 | variables which may have been created by the evaluation process. The
|
---|
| 347 | value type can be either :POLYNOMIAL, :POLY-LIST or :TERM, depending
|
---|
| 348 | on the form of the result returned by the top NGROBNER operation.
|
---|
| 349 | During evaluation, symbols supplied by RING-AND-ORDER-VAR (defaul
|
---|
| 350 | value 'RING-AND-ORDER), and RING-VAR (default value 'RING) are bound
|
---|
| 351 | to RING-AND-ORDER and RING instances."
|
---|
| 352 | `(let ((,vars (coerce-maxima-list ,maxima-vars))
|
---|
| 353 | ,@(when new-vars-supplied-p
|
---|
| 354 | (list `(,new-vars (coerce-maxima-list ,maxima-new-vars)))))
|
---|
| 355 | (poly->maxima
|
---|
| 356 | ,value-type
|
---|
| 357 | (let ((,ring-and-order-var ,(find-ring-and-order-by-name)))
|
---|
| 358 | ;; Define a shorthand to RING
|
---|
| 359 | (symbol-macrolet ((,ring-var (ro-ring ring-and-order)))
|
---|
| 360 | (let ,(let ((args nil))
|
---|
| 361 | (dolist (p polynomials args)
|
---|
| 362 | (setf args (cons `(,p (maxima->poly ,p ,vars ,ring-and-order-var)) args)))
|
---|
| 363 | (dolist (p poly-lists args)
|
---|
| 364 | (setf args (cons `(,p (maxima->poly-list ,p ,vars ,ring-and-order-var)) args)))
|
---|
| 365 | (dolist (p poly-list-lists args)
|
---|
| 366 | (setf args (cons `(,p (maxima->poly-list-list ,p ,vars ,ring-and-order-var)) args))))
|
---|
| 367 | . ,body)))
|
---|
| 368 | ,(if new-vars-supplied-p
|
---|
| 369 | `(append ,vars ,new-vars)
|
---|
| 370 | vars))))
|
---|
| 371 |
|
---|
| 372 |
|
---|
| 373 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 374 | ;;
|
---|
| 375 | ;; N-ary (unary and binary) operation definition facility
|
---|
| 376 | ;;
|
---|
| 377 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 378 |
|
---|
| 379 | (defmacro define-op (maxima-name ;Name of maxima level function
|
---|
| 380 | (fun-name env &rest args) ;Lisp level form to evaluate
|
---|
| 381 | &optional
|
---|
| 382 | (documentation nil documentation-supplied-p)
|
---|
| 383 | &aux
|
---|
| 384 | ;; The argument passed as first arg
|
---|
| 385 | (env-arg (ecase env
|
---|
| 386 | (:ring-and-order 'ring-and-order)
|
---|
| 387 | (:ring 'ring))))
|
---|
| 388 | "Define a MAXIMA-level unary operator MAXIMA-NAME corresponding to unary function FUN-NAME.
|
---|
| 389 | The second argument should be :RING or :RING-AND-ORDER, and it signals
|
---|
| 390 | the type of the first argument that should be passed to function
|
---|
| 391 | FUN-NAME. ARGS is a list of formal parameters passed to the function,
|
---|
| 392 | i.e. symbols used as arguments. The macro expands to a Maxima-level
|
---|
| 393 | function definition with name MAXIMA-NAME, which wraps FUN-NAME."
|
---|
| 394 | `(defmfun ,maxima-name (,@args vars)
|
---|
| 395 | ,@(when documentation-supplied-p (list documentation))
|
---|
| 396 | (with-ring-and-order ((vars) :polynomials (,@args) :value-type :polynomial)
|
---|
| 397 | (,fun-name ,env-arg ,@args))))
|
---|
| 398 |
|
---|
| 399 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 400 | ;;
|
---|
| 401 | ;; Maxima-level interface functions
|
---|
| 402 | ;;
|
---|
| 403 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 404 |
|
---|
| 405 | ;; Auxillary function for removing zero polynomial
|
---|
| 406 | (defun remzero (plist) (remove #'poly-zerop plist))
|
---|
| 407 |
|
---|
| 408 | ;;Simple operators
|
---|
| 409 | (define-op $poly_add (poly-add :ring-and-order p q)
|
---|
| 410 | "Adds two polynomials P and Q")
|
---|
| 411 |
|
---|
| 412 | (define-op $poly_subtract (poly-sub :ring-and-order p q)
|
---|
| 413 | "Subtracts a polynomial Q from P.")
|
---|
| 414 |
|
---|
| 415 | (define-op $poly_multiply (poly-mul :ring-and-order p q)
|
---|
| 416 | "Returns the product of polynomials P and Q.")
|
---|
| 417 |
|
---|
| 418 | (define-op $poly_s_polynomial (spoly :ring-and-order p q)
|
---|
| 419 | "Returns the syzygy polynomial (S-polynomial) of two polynomials P and Q.")
|
---|
| 420 |
|
---|
| 421 | (define-op $poly_primitive_part (poly-primitive-part :ring p)
|
---|
| 422 | "Returns the polynomial P divided by GCD of its coefficients.")
|
---|
| 423 |
|
---|
| 424 | (define-op $poly_normalize (poly-normalize :ring p)
|
---|
| 425 | "Returns the polynomial P divided by the leading coefficient.")
|
---|
| 426 |
|
---|
| 427 |
|
---|
| 428 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 429 | ;;
|
---|
| 430 | ;; More complex functions
|
---|
| 431 | ;;
|
---|
| 432 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 433 |
|
---|
| 434 | (defmfun $poly_expand (p vars)
|
---|
| 435 | "This function is equivalent to EXPAND(P) if P parses correctly to a polynomial.
|
---|
| 436 | If the representation is not compatible with a polynomial in variables VARS,
|
---|
| 437 | the result is an error."
|
---|
| 438 | (with-ring-and-order ((vars) :polynomials (p) :value-type :polynomial) p))
|
---|
| 439 |
|
---|
| 440 |
|
---|
| 441 | (defmfun $poly_expt (p n vars)
|
---|
| 442 | (with-ring-and-order ((vars) :polynomials (p) :value-type :polynomial)
|
---|
| 443 | (poly-expt ring-and-order p n)))
|
---|
| 444 |
|
---|
| 445 | (defmfun $poly_content (p vars)
|
---|
| 446 | (with-ring-and-order ((vars) :polynomials (p))
|
---|
| 447 | (poly-content ring p)))
|
---|
| 448 |
|
---|
| 449 | (defmfun $poly_pseudo_divide (f fl mvars &aux (vars (coerce-maxima-list mvars)))
|
---|
| 450 | (with-ring-and-order ((mvars)
|
---|
| 451 | :polynomials (f)
|
---|
| 452 | :poly-lists (fl)
|
---|
| 453 | :value-type :custom)
|
---|
| 454 | (multiple-value-bind (quot rem c division-count)
|
---|
| 455 | (poly-pseudo-divide ring-and-order f fl)
|
---|
| 456 | `((mlist)
|
---|
| 457 | ,(poly->maxima :poly-list quot vars)
|
---|
| 458 | ,(poly->maxima :polynomial rem vars)
|
---|
| 459 | ,c
|
---|
| 460 | ,division-count))))
|
---|
| 461 |
|
---|
| 462 | (defmfun $poly_exact_divide (f g vars)
|
---|
| 463 | (with-ring-and-order ((vars) :polynomials (f g) :value-type :polynomial)
|
---|
| 464 | (poly-exact-divide ring-and-order f g)))
|
---|
| 465 |
|
---|
| 466 | (defmfun $poly_normal_form (f fl vars)
|
---|
| 467 | (with-ring-and-order ((vars) :polynomials (f)
|
---|
| 468 | :poly-lists (fl)
|
---|
| 469 | :value-type :polynomial)
|
---|
| 470 | (normal-form ring-and-order f (remzero fl) nil)))
|
---|
| 471 |
|
---|
| 472 | (defmfun $poly_buchberger_criterion (g vars)
|
---|
| 473 | (with-ring-and-order ((vars) :poly-lists (g) :value-type :logical)
|
---|
| 474 | (buchberger-criterion ring-and-order g)))
|
---|
| 475 |
|
---|
| 476 | (defmfun $poly_buchberger (fl vars)
|
---|
| 477 | (with-ring-and-order ((vars) :poly-lists (fl) :value-type :poly-list)
|
---|
| 478 | (buchberger ring-and-order (remzero fl) 0 nil)))
|
---|
| 479 |
|
---|
| 480 | (defmfun $poly_reduction (plist vars)
|
---|
| 481 | (with-ring-and-order ((vars) :poly-lists (plist)
|
---|
| 482 | :value-type :poly-list)
|
---|
| 483 | (reduction ring-and-order plist)))
|
---|
| 484 |
|
---|
| 485 | (defmfun $poly_minimization (plist vars)
|
---|
| 486 | (with-ring-and-order ((vars) :poly-lists (plist)
|
---|
| 487 | :value-type :poly-list)
|
---|
| 488 | (minimization plist)))
|
---|
| 489 |
|
---|
| 490 | (defmfun $poly_normalize_list (plist vars)
|
---|
| 491 | (with-ring-and-order ((vars) :poly-lists (plist)
|
---|
| 492 | :value-type :poly-list)
|
---|
| 493 | (poly-normalize-list ring plist)))
|
---|
| 494 |
|
---|
| 495 | (defmfun $poly_grobner (f vars)
|
---|
| 496 | (with-ring-and-order ((vars) :poly-lists (f)
|
---|
| 497 | :value-type :poly-list)
|
---|
| 498 | (grobner ring-and-order (remzero f))))
|
---|
| 499 |
|
---|
| 500 | (defmfun $poly_reduced_grobner (f vars)
|
---|
| 501 | (with-ring-and-order ((vars) :poly-lists (f)
|
---|
| 502 | :value-type :poly-list)
|
---|
| 503 | (reduced-grobner ring-and-order (remzero f))))
|
---|
| 504 |
|
---|
| 505 | (defmfun $poly_depends_p (p var mvars
|
---|
| 506 | &aux
|
---|
| 507 | (vars (coerce-maxima-list mvars))
|
---|
| 508 | (pos (position var vars)))
|
---|
| 509 | (with-ring-and-order ((mvars) :polynomials (p) :value-type :custom)
|
---|
| 510 | (if (null pos)
|
---|
| 511 | (merror "~%Variable ~M not in the list of variables ~M." var mvars)
|
---|
| 512 | (poly-depends-p p pos))))
|
---|
| 513 |
|
---|
| 514 | (defmfun $poly_elimination_ideal (flist k vars)
|
---|
| 515 | (with-ring-and-order ((vars) :poly-lists (flist)
|
---|
| 516 | :value-type :poly-list)
|
---|
| 517 | (elimination-ideal ring-and-order flist k nil 0)))
|
---|
| 518 |
|
---|
| 519 | (defmfun $poly_colon_ideal (f g vars)
|
---|
| 520 | (with-ring-and-order ((vars) :poly-lists (f g) :value-type :poly-list)
|
---|
| 521 | (colon-ideal ring-and-order f g nil)))
|
---|
| 522 |
|
---|
| 523 | (defmfun $poly_ideal_intersection (f g vars)
|
---|
| 524 | (with-ring-and-order ((vars) :poly-lists (f g) :value-type :poly-list)
|
---|
| 525 | (ideal-intersection ring-and-order f g nil)))
|
---|
| 526 |
|
---|
| 527 | (defmfun $poly_lcm (f g vars)
|
---|
| 528 | (with-ring-and-order ((vars) :polynomials (f g) :value-type :polynomial)
|
---|
| 529 | (poly-lcm ring-and-order f g)))
|
---|
| 530 |
|
---|
| 531 | (defmfun $poly_gcd (f g vars)
|
---|
| 532 | ($first ($divide (m* f g) ($poly_lcm f g vars))))
|
---|
| 533 |
|
---|
| 534 | (defmfun $poly_grobner_equal (g1 g2 vars)
|
---|
| 535 | (with-ring-and-order ((vars) :poly-lists (g1 g2))
|
---|
| 536 | (grobner-equal ring-and-order g1 g2)))
|
---|
| 537 |
|
---|
| 538 | (defmfun $poly_grobner_subsetp (g1 g2 vars)
|
---|
| 539 | (with-ring-and-order ((vars) :poly-lists (g1 g2))
|
---|
| 540 | (grobner-subsetp ring-and-order g1 g2)))
|
---|
| 541 |
|
---|
| 542 | (defmfun $poly_grobner_member (p g vars)
|
---|
| 543 | (with-ring-and-order ((vars) :polynomials (p) :poly-lists (g))
|
---|
| 544 | (grobner-member ring-and-order p g)))
|
---|
| 545 |
|
---|
| 546 | (defmfun $poly_ideal_saturation1 (f p vars)
|
---|
| 547 | (with-ring-and-order ((vars) :poly-lists (f) :polynomials (p)
|
---|
| 548 | :value-type :poly-list)
|
---|
| 549 | (ideal-saturation-1 ring-and-order f p 0)))
|
---|
| 550 |
|
---|
| 551 | (defmfun $poly_saturation_extension (f plist vars new-vars)
|
---|
| 552 | (with-ring-and-order ((vars new-vars)
|
---|
| 553 | :poly-lists (f plist)
|
---|
| 554 | :value-type :poly-list)
|
---|
| 555 | (saturation-extension ring f plist)))
|
---|
| 556 |
|
---|
| 557 | (defmfun $poly_polysaturation_extension (f plist vars new-vars)
|
---|
| 558 | (with-ring-and-order ((vars new-vars)
|
---|
| 559 | :poly-lists (f plist)
|
---|
| 560 | :value-type :poly-list)
|
---|
| 561 | (polysaturation-extension ring f plist)))
|
---|
| 562 |
|
---|
| 563 | (defmfun $poly_ideal_polysaturation1 (f plist vars)
|
---|
| 564 | (with-ring-and-order ((vars) :poly-lists (f plist)
|
---|
| 565 | :value-type :poly-list)
|
---|
| 566 | (ideal-polysaturation-1 ring-and-order f plist 0 nil)))
|
---|
| 567 |
|
---|
| 568 | (defmfun $poly_ideal_saturation (f g vars)
|
---|
| 569 | (with-ring-and-order ((vars) :poly-lists (f g)
|
---|
| 570 | :value-type :poly-list)
|
---|
| 571 | (ideal-saturation ring-and-order f g 0 nil)))
|
---|
| 572 |
|
---|
| 573 | (defmfun $poly_ideal_polysaturation (f ideal-list vars)
|
---|
| 574 | (with-ring-and-order ((vars) :poly-lists (f)
|
---|
| 575 | :poly-list-lists (ideal-list)
|
---|
| 576 | :value-type :poly-list)
|
---|
| 577 | (ideal-polysaturation ring-and-order f ideal-list 0 nil)))
|
---|
| 578 |
|
---|
| 579 | (defmfun $poly_lt (f vars)
|
---|
| 580 | (with-ring-and-order ((vars) :polynomials (f) :value-type :polynomial)
|
---|
| 581 | (make-poly-from-termlist (list (poly-lt f)))))
|
---|
| 582 |
|
---|
| 583 | (defmfun $poly_lm (f vars)
|
---|
| 584 | (with-ring-and-order ((vars) :polynomials (f) :value-type :polynomial)
|
---|
| 585 | (make-poly-from-termlist (list (make-term :monom (poly-lm f) :coeff (funcall (ring-unit ring)))))))
|
---|