[1201] | 1 | ;;; -*- Mode: Lisp -*-
|
---|
[98] | 2 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 3 | ;;;
|
---|
| 4 | ;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
|
---|
| 5 | ;;;
|
---|
| 6 | ;;; This program is free software; you can redistribute it and/or modify
|
---|
| 7 | ;;; it under the terms of the GNU General Public License as published by
|
---|
| 8 | ;;; the Free Software Foundation; either version 2 of the License, or
|
---|
| 9 | ;;; (at your option) any later version.
|
---|
| 10 | ;;;
|
---|
| 11 | ;;; This program is distributed in the hope that it will be useful,
|
---|
| 12 | ;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 13 | ;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 14 | ;;; GNU General Public License for more details.
|
---|
| 15 | ;;;
|
---|
| 16 | ;;; You should have received a copy of the GNU General Public License
|
---|
| 17 | ;;; along with this program; if not, write to the Free Software
|
---|
| 18 | ;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
---|
| 19 | ;;;
|
---|
| 20 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 21 |
|
---|
[133] | 22 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 23 | ;;
|
---|
[268] | 24 | ;; Load this file into Maxima to bootstrap the Grobner package.
|
---|
[390] | 25 | ;; NOTE: This file does use symbols defined by Maxima, so it
|
---|
| 26 | ;; will not work when loaded in Common Lisp.
|
---|
[133] | 27 | ;;
|
---|
[268] | 28 | ;; DETAILS: This file implements an interface between the Grobner
|
---|
[374] | 29 | ;; basis package NGROBNER, which is a pure Common Lisp package, and
|
---|
| 30 | ;; Maxima. NGROBNER for efficiency uses its own representation of
|
---|
| 31 | ;; polynomials. Thus, it is necessary to convert Maxima representation
|
---|
| 32 | ;; to the internal representation and back. The facilities to do so
|
---|
| 33 | ;; are implemented in this file.
|
---|
[268] | 34 | ;;
|
---|
[270] | 35 | ;; Also, since the NGROBNER package consists of many Lisp files, it is
|
---|
[375] | 36 | ;; necessary to load the files. It is possible and preferrable to use
|
---|
| 37 | ;; ASDF for this purpose. The default is ASDF. It is also possible to
|
---|
| 38 | ;; simply used LOAD and COMPILE-FILE to accomplish this task.
|
---|
[270] | 39 | ;;
|
---|
[133] | 40 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 41 |
|
---|
[98] | 42 | (in-package :maxima)
|
---|
| 43 |
|
---|
[568] | 44 | (macsyma-module cgb-maxima)
|
---|
[98] | 45 |
|
---|
[568] | 46 |
|
---|
[98] | 47 | (eval-when
|
---|
| 48 | #+gcl (load eval)
|
---|
| 49 | #-gcl (:load-toplevel :execute)
|
---|
| 50 | (format t "~&Loading maxima-grobner ~a ~a~%"
|
---|
| 51 | "$Revision: 2.0 $" "$Date: 2015/06/02 0:34:17 $"))
|
---|
| 52 |
|
---|
| 53 | ;;FUNCTS is loaded because it contains the definition of LCM
|
---|
[995] | 54 | ($load "functs")
|
---|
[568] | 55 | #+sbcl(progn (require 'asdf) (load "ngrobner.asd")(asdf:load-system :ngrobner))
|
---|
[152] | 56 |
|
---|
[571] | 57 | (use-package :ngrobner)
|
---|
[274] | 58 |
|
---|
[571] | 59 |
|
---|
[98] | 60 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 61 | ;;
|
---|
| 62 | ;; Maxima expression ring
|
---|
| 63 | ;;
|
---|
| 64 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
[521] | 65 | ;;
|
---|
| 66 | ;; This is how we perform operations on coefficients
|
---|
| 67 | ;; using Maxima functions.
|
---|
| 68 | ;;
|
---|
| 69 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 70 |
|
---|
[1669] | 71 | (defparameter +maxima-ring+
|
---|
[230] | 72 | (make-ring
|
---|
[98] | 73 | ;;(defun coeff-zerop (expr) (meval1 `(($is) (($equal) ,expr 0))))
|
---|
| 74 | :parse #'(lambda (expr)
|
---|
| 75 | (when modulus (setf expr ($rat expr)))
|
---|
| 76 | expr)
|
---|
| 77 | :unit #'(lambda () (if modulus ($rat 1) 1))
|
---|
| 78 | :zerop #'(lambda (expr)
|
---|
| 79 | ;;When is exactly a maxima expression equal to 0?
|
---|
| 80 | (cond ((numberp expr)
|
---|
| 81 | (= expr 0))
|
---|
| 82 | ((atom expr) nil)
|
---|
| 83 | (t
|
---|
| 84 | (case (caar expr)
|
---|
| 85 | (mrat (eql ($ratdisrep expr) 0))
|
---|
| 86 | (otherwise (eql ($totaldisrep expr) 0))))))
|
---|
| 87 | :add #'(lambda (x y) (m+ x y))
|
---|
| 88 | :sub #'(lambda (x y) (m- x y))
|
---|
| 89 | :uminus #'(lambda (x) (m- x))
|
---|
| 90 | :mul #'(lambda (x y) (m* x y))
|
---|
| 91 | ;;(defun coeff-div (x y) (cadr ($divide x y)))
|
---|
| 92 | :div #'(lambda (x y) (m// x y))
|
---|
| 93 | :lcm #'(lambda (x y) (meval1 `((|$LCM|) ,x ,y)))
|
---|
| 94 | :ezgcd #'(lambda (x y) (apply #'values (cdr ($ezgcd ($totaldisrep x) ($totaldisrep y)))))
|
---|
| 95 | ;; :gcd #'(lambda (x y) (second ($ezgcd x y)))))
|
---|
| 96 | :gcd #'(lambda (x y) ($gcd x y))))
|
---|
| 97 |
|
---|
[619] | 98 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 99 | ;;
|
---|
| 100 | ;; Maxima expression parsing
|
---|
| 101 | ;;
|
---|
| 102 | ;;
|
---|
| 103 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 104 | ;;
|
---|
| 105 | ;; Functions and macros dealing with internal representation
|
---|
| 106 | ;; structure.
|
---|
| 107 | ;;
|
---|
| 108 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
[114] | 109 |
|
---|
[619] | 110 | (defun equal-test-p (expr1 expr2)
|
---|
| 111 | (alike1 expr1 expr2))
|
---|
| 112 |
|
---|
| 113 | (defun coerce-maxima-list (expr)
|
---|
| 114 | "Convert a Maxima list to Lisp list."
|
---|
| 115 | (cond
|
---|
| 116 | ((and (consp (car expr)) (eql (caar expr) 'mlist)) (cdr expr))
|
---|
| 117 | (t expr)))
|
---|
| 118 |
|
---|
| 119 | (defun free-of-vars (expr vars) (apply #'$freeof `(,@vars ,expr)))
|
---|
| 120 |
|
---|
[1642] | 121 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 122 | ;;
|
---|
| 123 | ;; Order utilities
|
---|
| 124 | ;;
|
---|
| 125 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 126 |
|
---|
[1674] | 127 | (defun find-ring-by-name (ring)
|
---|
[1644] | 128 | "This function returns the ring structure bases on input symbol."
|
---|
| 129 | (cond
|
---|
| 130 | ((null ring) nil)
|
---|
| 131 | ((symbolp ring)
|
---|
| 132 | (case ring
|
---|
[1650] | 133 | ((maxima-ring :maxima-ring #:maxima-ring $expression_ring #:expression_ring)
|
---|
[1669] | 134 | +maxima-ring+)
|
---|
| 135 | ((ring-of-integers :ring-of-integers #:ring-of-integers $ring_of_integers) +ring-of-integers+)
|
---|
[1644] | 136 | (otherwise
|
---|
| 137 | (mtell "~%Warning: Ring ~M not found. Using default.~%" ring))))
|
---|
| 138 | (t
|
---|
| 139 | (mtell "~%Ring specification ~M is not recognized. Using default.~%" ring)
|
---|
| 140 | nil)))
|
---|
| 141 |
|
---|
[1674] | 142 | (defun find-order-by-name (order)
|
---|
[1642] | 143 | "This function returns the order function bases on its name."
|
---|
| 144 | (cond
|
---|
| 145 | ((null order) nil)
|
---|
| 146 | ((symbolp order)
|
---|
| 147 | (case order
|
---|
[1650] | 148 | ((lex :lex $lex #:lex)
|
---|
[1649] | 149 | #'lex>)
|
---|
[1650] | 150 | ((grlex :grlex $grlex #:grlex)
|
---|
[1649] | 151 | #'grlex>)
|
---|
| 152 | ((grevlex :grevlex $grevlex #:grevlex)
|
---|
| 153 | #'grevlex>)
|
---|
[1650] | 154 | ((invlex :invlex $invlex #:invlex)
|
---|
[1649] | 155 | #'invlex>)
|
---|
[1642] | 156 | (otherwise
|
---|
| 157 | (mtell "~%Warning: Order ~M not found. Using default.~%" order))))
|
---|
| 158 | (t
|
---|
| 159 | (mtell "~%Order specification ~M is not recognized. Using default.~%" order)
|
---|
| 160 | nil)))
|
---|
| 161 |
|
---|
[1703] | 162 | (defun find-ring-and-order-by-name (&optional
|
---|
| 163 | (ring (find-ring-by-name $poly_coefficient_ring))
|
---|
| 164 | (order (find-order-by-name $poly_monomial_order))
|
---|
| 165 | (primary-elimination-order (find-order-by-name $poly_primary_elimination_order))
|
---|
| 166 | (secondary-elimination-order (find-order-by-name $poly_secondary_elimination_order))
|
---|
| 167 | &aux
|
---|
| 168 | (ring-and-order (make-ring-and-order
|
---|
| 169 | :ring ring
|
---|
| 170 | :order order
|
---|
| 171 | :primary-elimination-order primary-elimination-order
|
---|
| 172 | :secondary-elimination-order secondary-elimination-order)))
|
---|
[1721] | 173 | "Build RING-AND-ORDER structure. The defaults are determined by various Maxima-level switches,
|
---|
| 174 | which are names of ring and orders."
|
---|
[1703] | 175 | ring-and-order)
|
---|
| 176 |
|
---|
[1644] | 177 | (defun maxima->poly (expr vars
|
---|
[1703] | 178 | &optional
|
---|
| 179 | (ring-and-order (find-ring-and-order-by-name))
|
---|
| 180 | &aux
|
---|
[1709] | 181 | (vars (coerce-maxima-list vars))
|
---|
[1673] | 182 | (ring (ro-ring ring-and-order)))
|
---|
[1683] | 183 | "Convert a maxima polynomial expression EXPR in variables VARS to
|
---|
| 184 | internal form. This works by first converting the expression to Lisp,
|
---|
[1685] | 185 | and then evaluating the expression using polynomial arithmetic
|
---|
| 186 | implemented by the POLYNOMIAL package."
|
---|
[1708] | 187 | (labels ((parse (arg) (maxima->poly arg vars ring-and-order))
|
---|
[619] | 188 | (parse-list (args) (mapcar #'parse args)))
|
---|
| 189 | (cond
|
---|
| 190 | ((eql expr 0) (make-poly-zero))
|
---|
| 191 | ((member expr vars :test #'equal-test-p)
|
---|
| 192 | (let ((pos (position expr vars :test #'equal-test-p)))
|
---|
[1710] | 193 | (make-poly-variable ring (length vars) pos)))
|
---|
[619] | 194 | ((free-of-vars expr vars)
|
---|
| 195 | ;;This means that variable-free CRE and Poisson forms will be converted
|
---|
| 196 | ;;to coefficients intact
|
---|
[1710] | 197 | (coerce-coeff ring expr vars))
|
---|
[619] | 198 | (t
|
---|
| 199 | (case (caar expr)
|
---|
[1654] | 200 | (mplus (reduce #'(lambda (x y) (poly-add ring-and-order x y)) (parse-list (cdr expr))))
|
---|
[1710] | 201 | (mminus (poly-uminus ring (parse (cadr expr))))
|
---|
[619] | 202 | (mtimes
|
---|
| 203 | (if (endp (cddr expr)) ;unary
|
---|
| 204 | (parse (cdr expr))
|
---|
[1655] | 205 | (reduce #'(lambda (p q) (poly-mul ring-and-order p q)) (parse-list (cdr expr)))))
|
---|
[619] | 206 | (mexpt
|
---|
| 207 | (cond
|
---|
| 208 | ((member (cadr expr) vars :test #'equal-test-p)
|
---|
| 209 | ;;Special handling of (expt var pow)
|
---|
| 210 | (let ((pos (position (cadr expr) vars :test #'equal-test-p)))
|
---|
[1710] | 211 | (make-poly-variable ring (length vars) pos (caddr expr))))
|
---|
[619] | 212 | ((not (and (integerp (caddr expr)) (plusp (caddr expr))))
|
---|
| 213 | ;; Negative power means division in coefficient ring
|
---|
| 214 | ;; Non-integer power means non-polynomial coefficient
|
---|
| 215 | (mtell "~%Warning: Expression ~%~M~%contains power which is not a positive integer. Parsing as coefficient.~%"
|
---|
| 216 | expr)
|
---|
[1710] | 217 | (coerce-coeff ring expr vars))
|
---|
[1779] | 218 | (t (poly-expt ring-and-order (parse (cadr expr)) (caddr expr)))))
|
---|
[619] | 219 | (mrat (parse ($ratdisrep expr)))
|
---|
| 220 | (mpois (parse ($outofpois expr)))
|
---|
| 221 | (otherwise
|
---|
[1710] | 222 | (coerce-coeff ring expr vars)))))))
|
---|
[619] | 223 |
|
---|
[1696] | 224 | (defun maxima->poly-list (expr vars
|
---|
[1711] | 225 | &optional
|
---|
| 226 | (ring-and-order (find-ring-and-order-by-name)))
|
---|
[1693] | 227 | "Convert a Maxima representation of a list of polynomials to the internal form."
|
---|
[619] | 228 | (case (caar expr)
|
---|
[1688] | 229 | (mlist (mapcar #'(lambda (p)
|
---|
[1706] | 230 | (maxima->poly p vars ring-and-order))
|
---|
[1688] | 231 | (cdr expr)))
|
---|
[1691] | 232 | (otherwise (merror "Expression ~M is not a list of polynomials in variables ~M."
|
---|
| 233 | expr vars))))
|
---|
[619] | 234 |
|
---|
[1776] | 235 | (defun maxima->poly-list-list (poly-list-of-lists vars
|
---|
[1705] | 236 | &optional
|
---|
[1707] | 237 | (ring-and-order (find-ring-and-order-by-name)))
|
---|
[619] | 238 | "Parse a Maxima representation of a list of lists of polynomials."
|
---|
[1707] | 239 | (mapcar #'(lambda (g) (maxima->poly-list g vars ring-and-order))
|
---|
[1700] | 240 | (coerce-maxima-list poly-list-of-lists)))
|
---|
[619] | 241 |
|
---|
| 242 |
|
---|
[1688] | 243 |
|
---|
[111] | 244 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 245 | ;;
|
---|
[241] | 246 | ;; Conversion from internal form to Maxima general form
|
---|
| 247 | ;;
|
---|
| 248 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 249 |
|
---|
| 250 | (defun maxima-head ()
|
---|
| 251 | (if $poly_return_term_list
|
---|
[1761] | 252 | '(mlist)
|
---|
| 253 | '(mplus)))
|
---|
[241] | 254 |
|
---|
[1714] | 255 | (defun poly->maxima (poly-type object vars)
|
---|
[241] | 256 | (case poly-type
|
---|
[1757] | 257 | (:custom object) ;Bypass processing
|
---|
[1740] | 258 | (:polynomial
|
---|
[1719] | 259 | `(,(maxima-head) ,@(mapcar #'(lambda (term) (poly->maxima :term term vars)) (poly-termlist object))))
|
---|
[241] | 260 | (:poly-list
|
---|
[1761] | 261 | `((mlist) ,@(mapcar #'(lambda (p) ($ratdisrep (poly->maxima :polynomial p vars))) object)))
|
---|
[241] | 262 | (:term
|
---|
[1717] | 263 | `((mtimes) ,($ratdisrep (term-coeff object))
|
---|
[241] | 264 | ,@(mapcar #'(lambda (var power) `((mexpt) ,var ,power))
|
---|
[1720] | 265 | vars (monom->list (term-monom object)))))
|
---|
[241] | 266 | ;; Assumes that Lisp and Maxima logicals coincide
|
---|
| 267 | (:logical object)
|
---|
| 268 | (otherwise
|
---|
| 269 | object)))
|
---|
| 270 |
|
---|
| 271 |
|
---|
| 272 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 273 | ;;
|
---|
[111] | 274 | ;; Unary and binary operation definition facility
|
---|
| 275 | ;;
|
---|
| 276 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
[98] | 277 |
|
---|
[111] | 278 | (defmacro define-unop (maxima-name fun-name
|
---|
| 279 | &optional (documentation nil documentation-supplied-p))
|
---|
| 280 | "Define a MAXIMA-level unary operator MAXIMA-NAME corresponding to unary function FUN-NAME."
|
---|
| 281 | `(defun ,maxima-name (p vars
|
---|
| 282 | &aux
|
---|
| 283 | (vars (coerce-maxima-list vars))
|
---|
| 284 | (p (parse-poly p vars)))
|
---|
| 285 | ,@(when documentation-supplied-p (list documentation))
|
---|
[1796] | 286 | (poly->maxima :polynomial (,fun-name +maxima-ring+ p) vars)))
|
---|
[111] | 287 |
|
---|
| 288 | (defmacro define-binop (maxima-name fun-name
|
---|
| 289 | &optional (documentation nil documentation-supplied-p))
|
---|
| 290 | "Define a MAXIMA-level binary operator MAXIMA-NAME corresponding to binary function FUN-NAME."
|
---|
| 291 | `(defmfun ,maxima-name (p q vars
|
---|
| 292 | &aux
|
---|
| 293 | (vars (coerce-maxima-list vars))
|
---|
| 294 | (p (parse-poly p vars))
|
---|
| 295 | (q (parse-poly q vars)))
|
---|
| 296 | ,@(when documentation-supplied-p (list documentation))
|
---|
[1796] | 297 | (poly->maxima :polynomial (,fun-name +maxima-ring+ p q) vars)))
|
---|
[111] | 298 |
|
---|
| 299 |
|
---|
[219] | 300 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 301 | ;;
|
---|
| 302 | ;; Facilities for evaluating Grobner package expressions
|
---|
| 303 | ;; within a prepared environment
|
---|
| 304 | ;;
|
---|
| 305 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 306 |
|
---|
[1723] | 307 | #|
|
---|
[219] | 308 | (defmacro with-monomial-order ((order) &body body)
|
---|
| 309 | "Evaluate BODY with monomial order set to ORDER."
|
---|
| 310 | `(let ((*monomial-order* (or (find-order ,order) *monomial-order*)))
|
---|
| 311 | . ,body))
|
---|
| 312 |
|
---|
| 313 | (defmacro with-coefficient-ring ((ring) &body body)
|
---|
| 314 | "Evaluate BODY with coefficient ring set to RING."
|
---|
[1669] | 315 | `(let ((+maxima-ring+ (or (find-ring ,ring) +maxima-ring+)))
|
---|
[219] | 316 | . ,body))
|
---|
| 317 |
|
---|
[863] | 318 | (defmacro with-ring-and-order ((ring order) &body body)
|
---|
[830] | 319 | "Evaluate BODY with monomial order set to ORDER and coefficient ring set to RING."
|
---|
| 320 | `(let ((*monomial-order* (or (find-order ,order) *monomial-order*))
|
---|
[1669] | 321 | (+maxima-ring+ (or (find-ring ,ring) +maxima-ring+)))
|
---|
[830] | 322 | . ,body))
|
---|
| 323 |
|
---|
[219] | 324 | (defmacro with-elimination-orders ((primary secondary elimination-order)
|
---|
| 325 | &body body)
|
---|
| 326 | "Evaluate BODY with primary and secondary elimination orders set to PRIMARY and SECONDARY."
|
---|
| 327 | `(let ((*primary-elimination-order* (or (find-order ,primary) *primary-elimination-order*))
|
---|
| 328 | (*secondary-elimination-order* (or (find-order ,secondary) *secondary-elimination-order*))
|
---|
| 329 | (*elimination-order* (or (find-order ,elimination-order) *elimination-order*)))
|
---|
| 330 | . ,body))
|
---|
| 331 |
|
---|
[1723] | 332 | |#
|
---|
[219] | 333 |
|
---|
[1723] | 334 |
|
---|
[98] | 335 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 336 | ;;
|
---|
| 337 | ;; Maxima-level interface functions
|
---|
| 338 | ;;
|
---|
| 339 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 340 |
|
---|
| 341 | ;; Auxillary function for removing zero polynomial
|
---|
| 342 | (defun remzero (plist) (remove #'poly-zerop plist))
|
---|
| 343 |
|
---|
| 344 | ;;Simple operators
|
---|
| 345 |
|
---|
[1731] | 346 | #|
|
---|
[98] | 347 | (define-binop $poly_add poly-add
|
---|
| 348 | "Adds two polynomials P and Q")
|
---|
| 349 |
|
---|
| 350 | (define-binop $poly_subtract poly-sub
|
---|
| 351 | "Subtracts a polynomial Q from P.")
|
---|
| 352 |
|
---|
| 353 | (define-binop $poly_multiply poly-mul
|
---|
| 354 | "Returns the product of polynomials P and Q.")
|
---|
| 355 |
|
---|
| 356 | (define-binop $poly_s_polynomial spoly
|
---|
| 357 | "Returns the syzygy polynomial (S-polynomial) of two polynomials P and Q.")
|
---|
| 358 |
|
---|
| 359 | (define-unop $poly_primitive_part poly-primitive-part
|
---|
| 360 | "Returns the polynomial P divided by GCD of its coefficients.")
|
---|
| 361 |
|
---|
| 362 | (define-unop $poly_normalize poly-normalize
|
---|
| 363 | "Returns the polynomial P divided by the leading coefficient.")
|
---|
[1731] | 364 | |#
|
---|
[98] | 365 |
|
---|
[222] | 366 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 367 | ;;
|
---|
| 368 | ;; Macro facility for writing Maxima-level wrappers for
|
---|
| 369 | ;; functions operating on internal representation
|
---|
| 370 | ;;
|
---|
| 371 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
---|
| 372 |
|
---|
[1748] | 373 | (defmacro with-ring-and-order (((maxima-vars &optional (maxima-new-vars nil new-vars-supplied-p))
|
---|
[1749] | 374 | &key
|
---|
| 375 | (polynomials nil)
|
---|
[1725] | 376 | (poly-lists nil)
|
---|
| 377 | (poly-list-lists nil)
|
---|
[1749] | 378 | (value-type nil)
|
---|
[1783] | 379 | (ring-and-order-var 'ring-and-order)
|
---|
| 380 | (ring-var 'ring))
|
---|
[1734] | 381 | &body
|
---|
| 382 | body
|
---|
| 383 | &aux
|
---|
| 384 | (vars (gensym))
|
---|
[1742] | 385 | (new-vars (gensym)))
|
---|
[1751] | 386 | "Evaluate a polynomial expression BODY in an environment
|
---|
| 387 | constructred from Maxima switches. The supplied arguments
|
---|
| 388 | POLYNOMIALS, POLY-LISTS and POLY-LIST-LISTS should be polynomials,
|
---|
| 389 | polynomial lists an lists of lists of polynomials, in Maxima general
|
---|
| 390 | form. These are translated to NGROBNER package internal form and
|
---|
| 391 | evaluated using operations in the NGROBNER package. The BODY should be
|
---|
| 392 | defined in terms of those operations. MAXIMA-VARS is set to the list
|
---|
| 393 | of variable names used at the Maxima level. The evaluation is
|
---|
| 394 | performed by the NGROBNER package which ignores variable names, thus
|
---|
| 395 | MAXIMA-VARS is used only to translate the polynomial expression to
|
---|
| 396 | NGROBNER internal form. After evaluation, the value of BODY is
|
---|
| 397 | translated back to the Maxima general form. When MAXIMA-NEW-VARS is
|
---|
| 398 | present, it is appended to MAXIMA-VARS upon translation from the
|
---|
| 399 | internal form back to Maxima general form, thus allowing extra
|
---|
| 400 | variables which may have been created by the evaluation process. The
|
---|
| 401 | value type can be either :POLYNOMIAL, :POLY-LIST or :TERM, depending
|
---|
[1784] | 402 | on the form of the result returned by the top NGROBNER operation.
|
---|
[1785] | 403 | During evaluation, symbols supplied by RING-AND-ORDER-VAR (defaul
|
---|
| 404 | value 'RING-AND-ORDER), and RING-VAR (default value 'RING) are bound
|
---|
| 405 | to RING-AND-ORDER and RING instances."
|
---|
[222] | 406 | `(let ((,vars (coerce-maxima-list ,maxima-vars))
|
---|
| 407 | ,@(when new-vars-supplied-p
|
---|
[1288] | 408 | (list `(,new-vars (coerce-maxima-list ,maxima-new-vars)))))
|
---|
[1732] | 409 | (poly->maxima
|
---|
[222] | 410 | ,value-type
|
---|
[1789] | 411 | (let ((,ring-and-order-var ,(find-ring-and-order-by-name)))
|
---|
| 412 | ;; Define a shorthand to RING
|
---|
[1790] | 413 | (symbol-macrolet ((,ring-var (ro-ring ring-and-order)))
|
---|
[1789] | 414 | (let ,(let ((args nil))
|
---|
| 415 | (dolist (p polynomials args)
|
---|
| 416 | (setf args (cons `(,p (maxima->poly ,p ,vars ,ring-and-order-var)) args)))
|
---|
| 417 | (dolist (p poly-lists args)
|
---|
| 418 | (setf args (cons `(,p (maxima->poly-list ,p ,vars ,ring-and-order-var)) args)))
|
---|
| 419 | (dolist (p poly-list-lists args)
|
---|
| 420 | (setf args (cons `(,p (maxima->poly-list-list ,p ,vars ,ring-and-order-var)) args))))
|
---|
| 421 | . ,body)))
|
---|
[1736] | 422 | ,(if new-vars-supplied-p
|
---|
| 423 | `(append ,vars ,new-vars)
|
---|
| 424 | vars))))
|
---|
[222] | 425 |
|
---|
| 426 |
|
---|
[98] | 427 | ;;Functions
|
---|
| 428 |
|
---|
| 429 | (defmfun $poly_expand (p vars)
|
---|
| 430 | "This function is equivalent to EXPAND(P) if P parses correctly to a polynomial.
|
---|
| 431 | If the representation is not compatible with a polynomial in variables VARS,
|
---|
| 432 | the result is an error."
|
---|
[1735] | 433 | (with-ring-and-order ((vars) :polynomials (p) :value-type :polynomial) p))
|
---|
[98] | 434 |
|
---|
[1724] | 435 |
|
---|
[98] | 436 | (defmfun $poly_expt (p n vars)
|
---|
[1741] | 437 | (with-ring-and-order ((vars) :polynomials (p) :value-type :polynomial)
|
---|
[1750] | 438 | (poly-expt ring-and-order p n)))
|
---|
[98] | 439 |
|
---|
| 440 | (defmfun $poly_content (p vars)
|
---|
[1752] | 441 | (with-ring-and-order ((vars) :polynomials (p))
|
---|
[1786] | 442 | (poly-content ring p)))
|
---|
[98] | 443 |
|
---|
[1767] | 444 | #|
|
---|
[1754] | 445 | (defmfun $poly_pseudo_divide (f fl vars)
|
---|
[1758] | 446 | (with-ring-and-order ((vars)
|
---|
| 447 | :polynomials (f)
|
---|
| 448 | :poly-lists (fl)
|
---|
| 449 | :value-type :custom)
|
---|
[1753] | 450 | (multiple-value-bind (quot rem c division-count)
|
---|
[1765] | 451 | (poly-pseudo-divide ring-and-order f fl)
|
---|
[1766] | 452 | `((mlist)
|
---|
| 453 | ,(poly->maxima :poly-list quot vars)
|
---|
| 454 | ,(poly->maxima :polynomial rem vars)
|
---|
| 455 | ,c
|
---|
| 456 | ,division-count))))
|
---|
[1767] | 457 | |#
|
---|
[98] | 458 |
|
---|
[1752] | 459 |
|
---|
[98] | 460 | (defmfun $poly_exact_divide (f g vars)
|
---|
[1768] | 461 | (with-ring-and-order ((vars) :polynomials (f g) :value-type :polynomial)
|
---|
| 462 | (poly-exact-divide ring-and-order f g)))
|
---|
[98] | 463 |
|
---|
| 464 | (defmfun $poly_normal_form (f fl vars)
|
---|
[1769] | 465 | (with-ring-and-order ((vars) :polynomials (f)
|
---|
[98] | 466 | :poly-lists (fl)
|
---|
| 467 | :value-type :polynomial)
|
---|
[1769] | 468 | (normal-form ring-and-order f (remzero fl) nil)))
|
---|
[98] | 469 |
|
---|
| 470 | (defmfun $poly_buchberger_criterion (g vars)
|
---|
[1769] | 471 | (with-ring-and-order ((vars) :poly-lists (g) :value-type :logical)
|
---|
| 472 | (buchberger-criterion ring-and-order g)))
|
---|
[98] | 473 |
|
---|
| 474 | (defmfun $poly_buchberger (fl vars)
|
---|
[1769] | 475 | (with-ring-and-order ((vars) :poly-lists (fl) :value-type :poly-list)
|
---|
| 476 | (buchberger ring-and-order (remzero fl) 0 nil)))
|
---|
[98] | 477 |
|
---|
| 478 | (defmfun $poly_reduction (plist vars)
|
---|
[1769] | 479 | (with-ring-and-order ((vars) :poly-lists (plist)
|
---|
[98] | 480 | :value-type :poly-list)
|
---|
[1769] | 481 | (reduction ring-and-order plist)))
|
---|
[98] | 482 |
|
---|
| 483 | (defmfun $poly_minimization (plist vars)
|
---|
[1769] | 484 | (with-ring-and-order ((vars) :poly-lists (plist)
|
---|
[98] | 485 | :value-type :poly-list)
|
---|
| 486 | (minimization plist)))
|
---|
| 487 |
|
---|
| 488 | (defmfun $poly_normalize_list (plist vars)
|
---|
[1769] | 489 | (with-ring-and-order ((vars) :poly-lists (plist)
|
---|
[98] | 490 | :value-type :poly-list)
|
---|
[1786] | 491 | (poly-normalize-list ring plist)))
|
---|
[98] | 492 |
|
---|
| 493 | (defmfun $poly_grobner (f vars)
|
---|
[1769] | 494 | (with-ring-and-order ((vars) :poly-lists (f)
|
---|
[98] | 495 | :value-type :poly-list)
|
---|
[1769] | 496 | (grobner ring-and-order (remzero f))))
|
---|
[98] | 497 |
|
---|
| 498 | (defmfun $poly_reduced_grobner (f vars)
|
---|
[1769] | 499 | (with-ring-and-order ((vars) :poly-lists (f)
|
---|
[98] | 500 | :value-type :poly-list)
|
---|
[1769] | 501 | (reduced-grobner ring-and-order (remzero f))))
|
---|
[98] | 502 |
|
---|
| 503 | (defmfun $poly_depends_p (p var mvars
|
---|
[1771] | 504 | &aux
|
---|
[1773] | 505 | (vars (coerce-maxima-list mvars))
|
---|
[1770] | 506 | (pos (position var vars)))
|
---|
| 507 | (with-ring-and-order ((mvars) :polynomials (p) :value-type :custom)
|
---|
| 508 | (if (null pos)
|
---|
| 509 | (merror "~%Variable ~M not in the list of variables ~M." var mvars)
|
---|
[1774] | 510 | (poly-depends-p p pos))))
|
---|
[98] | 511 |
|
---|
| 512 | (defmfun $poly_elimination_ideal (flist k vars)
|
---|
[1769] | 513 | (with-ring-and-order ((vars) :poly-lists (flist)
|
---|
[98] | 514 | :value-type :poly-list)
|
---|
[1769] | 515 | (elimination-ideal ring-and-order flist k nil 0)))
|
---|
[98] | 516 |
|
---|
| 517 | (defmfun $poly_colon_ideal (f g vars)
|
---|
[1769] | 518 | (with-ring-and-order ((vars) :poly-lists (f g) :value-type :poly-list)
|
---|
| 519 | (colon-ideal ring-and-order f g nil)))
|
---|
[98] | 520 |
|
---|
| 521 | (defmfun $poly_ideal_intersection (f g vars)
|
---|
[1769] | 522 | (with-ring-and-order ((vars) :poly-lists (f g) :value-type :poly-list)
|
---|
| 523 | (ideal-intersection ring-and-order f g nil)))
|
---|
[98] | 524 |
|
---|
| 525 | (defmfun $poly_lcm (f g vars)
|
---|
[1769] | 526 | (with-ring-and-order ((vars) :polynomials (f g) :value-type :polynomial)
|
---|
| 527 | (poly-lcm ring-and-order f g)))
|
---|
[98] | 528 |
|
---|
| 529 | (defmfun $poly_gcd (f g vars)
|
---|
| 530 | ($first ($divide (m* f g) ($poly_lcm f g vars))))
|
---|
| 531 |
|
---|
| 532 | (defmfun $poly_grobner_equal (g1 g2 vars)
|
---|
[1769] | 533 | (with-ring-and-order ((vars) :poly-lists (g1 g2))
|
---|
| 534 | (grobner-equal ring-and-order g1 g2)))
|
---|
[98] | 535 |
|
---|
| 536 | (defmfun $poly_grobner_subsetp (g1 g2 vars)
|
---|
[1769] | 537 | (with-ring-and-order ((vars) :poly-lists (g1 g2))
|
---|
| 538 | (grobner-subsetp ring-and-order g1 g2)))
|
---|
[98] | 539 |
|
---|
| 540 | (defmfun $poly_grobner_member (p g vars)
|
---|
[1769] | 541 | (with-ring-and-order ((vars) :polynomials (p) :poly-lists (g))
|
---|
| 542 | (grobner-member ring-and-order p g)))
|
---|
[98] | 543 |
|
---|
| 544 | (defmfun $poly_ideal_saturation1 (f p vars)
|
---|
[1769] | 545 | (with-ring-and-order ((vars) :poly-lists (f) :polynomials (p)
|
---|
[98] | 546 | :value-type :poly-list)
|
---|
[1793] | 547 | (ideal-saturation-1 ring-and-order f p 0)))
|
---|
[98] | 548 |
|
---|
| 549 | (defmfun $poly_saturation_extension (f plist vars new-vars)
|
---|
[1769] | 550 | (with-ring-and-order ((vars new-vars)
|
---|
[98] | 551 | :poly-lists (f plist)
|
---|
| 552 | :value-type :poly-list)
|
---|
[1792] | 553 | (saturation-extension ring f plist)))
|
---|
[98] | 554 |
|
---|
| 555 | (defmfun $poly_polysaturation_extension (f plist vars new-vars)
|
---|
[1769] | 556 | (with-ring-and-order ((vars new-vars)
|
---|
[98] | 557 | :poly-lists (f plist)
|
---|
| 558 | :value-type :poly-list)
|
---|
[1790] | 559 | (polysaturation-extension ring f plist)))
|
---|
[98] | 560 |
|
---|
| 561 | (defmfun $poly_ideal_polysaturation1 (f plist vars)
|
---|
[1769] | 562 | (with-ring-and-order ((vars) :poly-lists (f plist)
|
---|
[98] | 563 | :value-type :poly-list)
|
---|
[1794] | 564 | (ideal-polysaturation-1 ring-and-order f plist 0 nil)))
|
---|
[98] | 565 |
|
---|
| 566 | (defmfun $poly_ideal_saturation (f g vars)
|
---|
[1769] | 567 | (with-ring-and-order ((vars) :poly-lists (f g)
|
---|
[98] | 568 | :value-type :poly-list)
|
---|
[1795] | 569 | (ideal-saturation ring-and-order f g 0 nil)))
|
---|
[98] | 570 |
|
---|
| 571 | (defmfun $poly_ideal_polysaturation (f ideal-list vars)
|
---|
[1769] | 572 | (with-ring-and-order ((vars) :poly-lists (f)
|
---|
[98] | 573 | :poly-list-lists (ideal-list)
|
---|
| 574 | :value-type :poly-list)
|
---|
[1769] | 575 | (ideal-polysaturation ring-and-order f ideal-list 0 nil)))
|
---|
[98] | 576 |
|
---|
| 577 | (defmfun $poly_lt (f vars)
|
---|
[1769] | 578 | (with-ring-and-order ((vars) :polynomials (f) :value-type :polynomial)
|
---|
[98] | 579 | (make-poly-from-termlist (list (poly-lt f)))))
|
---|
| 580 |
|
---|
| 581 | (defmfun $poly_lm (f vars)
|
---|
[1769] | 582 | (with-ring-and-order ((vars) :polynomials (f) :value-type :polynomial)
|
---|
[1786] | 583 | (make-poly-from-termlist (list (make-term (poly-lm f) (funcall (ring-unit ring)))))))
|
---|