close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/mx-grobner.lisp@ 1713

Last change on this file since 1713 was 1713, checked in by Marek Rychlik, 10 years ago

* empty log message *

File size: 19.9 KB
RevLine 
[1201]1;;; -*- Mode: Lisp -*-
[98]2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
[133]22;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
23;;
[268]24;; Load this file into Maxima to bootstrap the Grobner package.
[390]25;; NOTE: This file does use symbols defined by Maxima, so it
26;; will not work when loaded in Common Lisp.
[133]27;;
[268]28;; DETAILS: This file implements an interface between the Grobner
[374]29;; basis package NGROBNER, which is a pure Common Lisp package, and
30;; Maxima. NGROBNER for efficiency uses its own representation of
31;; polynomials. Thus, it is necessary to convert Maxima representation
32;; to the internal representation and back. The facilities to do so
33;; are implemented in this file.
[268]34;;
[270]35;; Also, since the NGROBNER package consists of many Lisp files, it is
[375]36;; necessary to load the files. It is possible and preferrable to use
37;; ASDF for this purpose. The default is ASDF. It is also possible to
38;; simply used LOAD and COMPILE-FILE to accomplish this task.
[270]39;;
[133]40;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
41
[98]42(in-package :maxima)
43
[568]44(macsyma-module cgb-maxima)
[98]45
[568]46
[98]47(eval-when
48 #+gcl (load eval)
49 #-gcl (:load-toplevel :execute)
50 (format t "~&Loading maxima-grobner ~a ~a~%"
51 "$Revision: 2.0 $" "$Date: 2015/06/02 0:34:17 $"))
52
53;;FUNCTS is loaded because it contains the definition of LCM
[995]54($load "functs")
[568]55#+sbcl(progn (require 'asdf) (load "ngrobner.asd")(asdf:load-system :ngrobner))
[152]56
[571]57(use-package :ngrobner)
[274]58
[571]59
[98]60;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
61;;
62;; Maxima expression ring
63;;
64;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
[521]65;;
66;; This is how we perform operations on coefficients
67;; using Maxima functions.
68;;
69;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
70
[1669]71(defparameter +maxima-ring+
[230]72 (make-ring
[98]73 ;;(defun coeff-zerop (expr) (meval1 `(($is) (($equal) ,expr 0))))
74 :parse #'(lambda (expr)
75 (when modulus (setf expr ($rat expr)))
76 expr)
77 :unit #'(lambda () (if modulus ($rat 1) 1))
78 :zerop #'(lambda (expr)
79 ;;When is exactly a maxima expression equal to 0?
80 (cond ((numberp expr)
81 (= expr 0))
82 ((atom expr) nil)
83 (t
84 (case (caar expr)
85 (mrat (eql ($ratdisrep expr) 0))
86 (otherwise (eql ($totaldisrep expr) 0))))))
87 :add #'(lambda (x y) (m+ x y))
88 :sub #'(lambda (x y) (m- x y))
89 :uminus #'(lambda (x) (m- x))
90 :mul #'(lambda (x y) (m* x y))
91 ;;(defun coeff-div (x y) (cadr ($divide x y)))
92 :div #'(lambda (x y) (m// x y))
93 :lcm #'(lambda (x y) (meval1 `((|$LCM|) ,x ,y)))
94 :ezgcd #'(lambda (x y) (apply #'values (cdr ($ezgcd ($totaldisrep x) ($totaldisrep y)))))
95 ;; :gcd #'(lambda (x y) (second ($ezgcd x y)))))
96 :gcd #'(lambda (x y) ($gcd x y))))
97
[619]98;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
99;;
100;; Maxima expression parsing
101;;
102;;
103;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
104;;
105;; Functions and macros dealing with internal representation
106;; structure.
107;;
108;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
[114]109
[619]110(defun equal-test-p (expr1 expr2)
111 (alike1 expr1 expr2))
112
113(defun coerce-maxima-list (expr)
114 "Convert a Maxima list to Lisp list."
115 (cond
116 ((and (consp (car expr)) (eql (caar expr) 'mlist)) (cdr expr))
117 (t expr)))
118
119(defun free-of-vars (expr vars) (apply #'$freeof `(,@vars ,expr)))
120
[1642]121;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
122;;
123;; Order utilities
124;;
125;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
126
[1674]127(defun find-ring-by-name (ring)
[1644]128 "This function returns the ring structure bases on input symbol."
129 (cond
130 ((null ring) nil)
131 ((symbolp ring)
132 (case ring
[1650]133 ((maxima-ring :maxima-ring #:maxima-ring $expression_ring #:expression_ring)
[1669]134 +maxima-ring+)
135 ((ring-of-integers :ring-of-integers #:ring-of-integers $ring_of_integers) +ring-of-integers+)
[1644]136 (otherwise
137 (mtell "~%Warning: Ring ~M not found. Using default.~%" ring))))
138 (t
139 (mtell "~%Ring specification ~M is not recognized. Using default.~%" ring)
140 nil)))
141
[1674]142(defun find-order-by-name (order)
[1642]143 "This function returns the order function bases on its name."
144 (cond
145 ((null order) nil)
146 ((symbolp order)
147 (case order
[1650]148 ((lex :lex $lex #:lex)
[1649]149 #'lex>)
[1650]150 ((grlex :grlex $grlex #:grlex)
[1649]151 #'grlex>)
152 ((grevlex :grevlex $grevlex #:grevlex)
153 #'grevlex>)
[1650]154 ((invlex :invlex $invlex #:invlex)
[1649]155 #'invlex>)
[1642]156 (otherwise
157 (mtell "~%Warning: Order ~M not found. Using default.~%" order))))
158 (t
159 (mtell "~%Order specification ~M is not recognized. Using default.~%" order)
160 nil)))
161
[1703]162(defun find-ring-and-order-by-name (&optional
163 (ring (find-ring-by-name $poly_coefficient_ring))
164 (order (find-order-by-name $poly_monomial_order))
165 (primary-elimination-order (find-order-by-name $poly_primary_elimination_order))
166 (secondary-elimination-order (find-order-by-name $poly_secondary_elimination_order))
167 &aux
168 (ring-and-order (make-ring-and-order
169 :ring ring
170 :order order
171 :primary-elimination-order primary-elimination-order
172 :secondary-elimination-order secondary-elimination-order)))
173 ring-and-order)
174
[1644]175(defun maxima->poly (expr vars
[1703]176 &optional
177 (ring-and-order (find-ring-and-order-by-name))
178 &aux
[1709]179 (vars (coerce-maxima-list vars))
[1673]180 (ring (ro-ring ring-and-order)))
[1683]181 "Convert a maxima polynomial expression EXPR in variables VARS to
182internal form. This works by first converting the expression to Lisp,
[1685]183and then evaluating the expression using polynomial arithmetic
184implemented by the POLYNOMIAL package."
[1708]185 (labels ((parse (arg) (maxima->poly arg vars ring-and-order))
[619]186 (parse-list (args) (mapcar #'parse args)))
187 (cond
188 ((eql expr 0) (make-poly-zero))
189 ((member expr vars :test #'equal-test-p)
190 (let ((pos (position expr vars :test #'equal-test-p)))
[1710]191 (make-poly-variable ring (length vars) pos)))
[619]192 ((free-of-vars expr vars)
193 ;;This means that variable-free CRE and Poisson forms will be converted
194 ;;to coefficients intact
[1710]195 (coerce-coeff ring expr vars))
[619]196 (t
197 (case (caar expr)
[1654]198 (mplus (reduce #'(lambda (x y) (poly-add ring-and-order x y)) (parse-list (cdr expr))))
[1710]199 (mminus (poly-uminus ring (parse (cadr expr))))
[619]200 (mtimes
201 (if (endp (cddr expr)) ;unary
202 (parse (cdr expr))
[1655]203 (reduce #'(lambda (p q) (poly-mul ring-and-order p q)) (parse-list (cdr expr)))))
[619]204 (mexpt
205 (cond
206 ((member (cadr expr) vars :test #'equal-test-p)
207 ;;Special handling of (expt var pow)
208 (let ((pos (position (cadr expr) vars :test #'equal-test-p)))
[1710]209 (make-poly-variable ring (length vars) pos (caddr expr))))
[619]210 ((not (and (integerp (caddr expr)) (plusp (caddr expr))))
211 ;; Negative power means division in coefficient ring
212 ;; Non-integer power means non-polynomial coefficient
213 (mtell "~%Warning: Expression ~%~M~%contains power which is not a positive integer. Parsing as coefficient.~%"
214 expr)
[1710]215 (coerce-coeff ring expr vars))
216 (t (poly-expt ring (parse (cadr expr)) (caddr expr)))))
[619]217 (mrat (parse ($ratdisrep expr)))
218 (mpois (parse ($outofpois expr)))
219 (otherwise
[1710]220 (coerce-coeff ring expr vars)))))))
[619]221
[1696]222(defun maxima->poly-list (expr vars
[1711]223 &optional
224 (ring-and-order (find-ring-and-order-by-name)))
[1693]225 "Convert a Maxima representation of a list of polynomials to the internal form."
[619]226 (case (caar expr)
[1688]227 (mlist (mapcar #'(lambda (p)
[1706]228 (maxima->poly p vars ring-and-order))
[1688]229 (cdr expr)))
[1691]230 (otherwise (merror "Expression ~M is not a list of polynomials in variables ~M."
231 expr vars))))
[619]232
[1700]233(defun maxima->poly-list-of-lists (poly-list-of-lists vars
[1705]234 &optional
[1707]235 (ring-and-order (find-ring-and-order-by-name)))
[619]236 "Parse a Maxima representation of a list of lists of polynomials."
[1707]237 (mapcar #'(lambda (g) (maxima->poly-list g vars ring-and-order))
[1700]238 (coerce-maxima-list poly-list-of-lists)))
[619]239
240
[1688]241
[111]242;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
243;;
[241]244;; Conversion from internal form to Maxima general form
245;;
246;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
247
248(defun maxima-head ()
249 (if $poly_return_term_list
250 '(mlist)
251 '(mplus)))
252
253(defun coerce-to-maxima (poly-type object vars)
254 (case poly-type
255 (:polynomial
256 `(,(maxima-head) ,@(mapcar #'(lambda (term) (coerce-to-maxima :term term vars)) (poly-termlist object))))
257 (:poly-list
258 `((mlist) ,@(mapcar #'(lambda (p) (funcall *ratdisrep-fun* (coerce-to-maxima :polynomial p vars))) object)))
259 (:term
260 `((mtimes) ,(funcall *ratdisrep-fun* (term-coeff object))
261 ,@(mapcar #'(lambda (var power) `((mexpt) ,var ,power))
[1713]262 vars (monom->list object))))
[241]263 ;; Assumes that Lisp and Maxima logicals coincide
264 (:logical object)
265 (otherwise
266 object)))
267
268
[1712]269#|
270
271
[241]272;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
273;;
[111]274;; Unary and binary operation definition facility
275;;
276;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
[98]277
[111]278(defmacro define-unop (maxima-name fun-name
279 &optional (documentation nil documentation-supplied-p))
280 "Define a MAXIMA-level unary operator MAXIMA-NAME corresponding to unary function FUN-NAME."
281 `(defun ,maxima-name (p vars
282 &aux
283 (vars (coerce-maxima-list vars))
284 (p (parse-poly p vars)))
285 ,@(when documentation-supplied-p (list documentation))
[1669]286 (coerce-to-maxima :polynomial (,fun-name +maxima-ring+ p) vars)))
[111]287
288(defmacro define-binop (maxima-name fun-name
289 &optional (documentation nil documentation-supplied-p))
290 "Define a MAXIMA-level binary operator MAXIMA-NAME corresponding to binary function FUN-NAME."
291 `(defmfun ,maxima-name (p q vars
292 &aux
293 (vars (coerce-maxima-list vars))
294 (p (parse-poly p vars))
295 (q (parse-poly q vars)))
296 ,@(when documentation-supplied-p (list documentation))
[1669]297 (coerce-to-maxima :polynomial (,fun-name +maxima-ring+ p q) vars)))
[111]298
299
[219]300;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
301;;
302;; Facilities for evaluating Grobner package expressions
303;; within a prepared environment
304;;
305;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
306
307(defmacro with-monomial-order ((order) &body body)
308 "Evaluate BODY with monomial order set to ORDER."
309 `(let ((*monomial-order* (or (find-order ,order) *monomial-order*)))
310 . ,body))
311
312(defmacro with-coefficient-ring ((ring) &body body)
313 "Evaluate BODY with coefficient ring set to RING."
[1669]314 `(let ((+maxima-ring+ (or (find-ring ,ring) +maxima-ring+)))
[219]315 . ,body))
316
[863]317(defmacro with-ring-and-order ((ring order) &body body)
[830]318 "Evaluate BODY with monomial order set to ORDER and coefficient ring set to RING."
319 `(let ((*monomial-order* (or (find-order ,order) *monomial-order*))
[1669]320 (+maxima-ring+ (or (find-ring ,ring) +maxima-ring+)))
[830]321 . ,body))
322
[219]323(defmacro with-elimination-orders ((primary secondary elimination-order)
324 &body body)
325 "Evaluate BODY with primary and secondary elimination orders set to PRIMARY and SECONDARY."
326 `(let ((*primary-elimination-order* (or (find-order ,primary) *primary-elimination-order*))
327 (*secondary-elimination-order* (or (find-order ,secondary) *secondary-elimination-order*))
328 (*elimination-order* (or (find-order ,elimination-order) *elimination-order*)))
329 . ,body))
330
331
[98]332;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
333;;
334;; Maxima-level interface functions
335;;
336;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
337
338;; Auxillary function for removing zero polynomial
339(defun remzero (plist) (remove #'poly-zerop plist))
340
341;;Simple operators
342
343(define-binop $poly_add poly-add
344 "Adds two polynomials P and Q")
345
346(define-binop $poly_subtract poly-sub
347 "Subtracts a polynomial Q from P.")
348
349(define-binop $poly_multiply poly-mul
350 "Returns the product of polynomials P and Q.")
351
352(define-binop $poly_s_polynomial spoly
353 "Returns the syzygy polynomial (S-polynomial) of two polynomials P and Q.")
354
355(define-unop $poly_primitive_part poly-primitive-part
356 "Returns the polynomial P divided by GCD of its coefficients.")
357
358(define-unop $poly_normalize poly-normalize
359 "Returns the polynomial P divided by the leading coefficient.")
360
[222]361;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
362;;
363;; Macro facility for writing Maxima-level wrappers for
364;; functions operating on internal representation
365;;
366;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
367
368(defmacro with-parsed-polynomials (((maxima-vars &optional (maxima-new-vars nil new-vars-supplied-p))
369 &key (polynomials nil)
[1288]370 (poly-lists nil)
371 (poly-list-lists nil)
372 (value-type nil))
[222]373 &body body
374 &aux (vars (gensym))
[1288]375 (new-vars (gensym)))
[222]376 `(let ((,vars (coerce-maxima-list ,maxima-vars))
377 ,@(when new-vars-supplied-p
[1288]378 (list `(,new-vars (coerce-maxima-list ,maxima-new-vars)))))
[222]379 (coerce-to-maxima
380 ,value-type
381 (with-coefficient-ring ($poly_coefficient_ring)
382 (with-monomial-order ($poly_monomial_order)
383 (with-elimination-orders ($poly_primary_elimination_order
384 $poly_secondary_elimination_order
385 $poly_elimination_order)
386 (let ,(let ((args nil))
[1288]387 (dolist (p polynomials args)
388 (setf args (cons `(,p (parse-poly ,p ,vars)) args)))
389 (dolist (p poly-lists args)
390 (setf args (cons `(,p (parse-poly-list ,p ,vars)) args)))
391 (dolist (p poly-list-lists args)
392 (setf args (cons `(,p (parse-poly-list-list ,p ,vars)) args))))
[222]393 . ,body))))
394 ,(if new-vars-supplied-p
395 `(append ,vars ,new-vars)
[1288]396 vars))))
[222]397
398
[98]399;;Functions
400
401(defmfun $poly_expand (p vars)
402 "This function is equivalent to EXPAND(P) if P parses correctly to a polynomial.
403If the representation is not compatible with a polynomial in variables VARS,
404the result is an error."
405 (with-parsed-polynomials ((vars) :polynomials (p)
406 :value-type :polynomial)
407 p))
408
409(defmfun $poly_expt (p n vars)
410 (with-parsed-polynomials ((vars) :polynomials (p) :value-type :polynomial)
[1669]411 (poly-expt +maxima-ring+ p n)))
[98]412
413(defmfun $poly_content (p vars)
414 (with-parsed-polynomials ((vars) :polynomials (p))
[1669]415 (poly-content +maxima-ring+ p)))
[98]416
417(defmfun $poly_pseudo_divide (f fl vars
418 &aux (vars (coerce-maxima-list vars))
419 (f (parse-poly f vars))
420 (fl (parse-poly-list fl vars)))
421 (multiple-value-bind (quot rem c division-count)
[1669]422 (poly-pseudo-divide +maxima-ring+ f fl)
[98]423 `((mlist)
424 ,(coerce-to-maxima :poly-list quot vars)
425 ,(coerce-to-maxima :polynomial rem vars)
426 ,c
427 ,division-count)))
428
429(defmfun $poly_exact_divide (f g vars)
430 (with-parsed-polynomials ((vars) :polynomials (f g) :value-type :polynomial)
[1669]431 (poly-exact-divide +maxima-ring+ f g)))
[98]432
433(defmfun $poly_normal_form (f fl vars)
434 (with-parsed-polynomials ((vars) :polynomials (f)
435 :poly-lists (fl)
436 :value-type :polynomial)
[1669]437 (normal-form +maxima-ring+ f (remzero fl) nil)))
[98]438
439(defmfun $poly_buchberger_criterion (g vars)
440 (with-parsed-polynomials ((vars) :poly-lists (g) :value-type :logical)
[1669]441 (buchberger-criterion +maxima-ring+ g)))
[98]442
443(defmfun $poly_buchberger (fl vars)
444 (with-parsed-polynomials ((vars) :poly-lists (fl) :value-type :poly-list)
[1669]445 (buchberger +maxima-ring+ (remzero fl) 0 nil)))
[98]446
447(defmfun $poly_reduction (plist vars)
448 (with-parsed-polynomials ((vars) :poly-lists (plist)
449 :value-type :poly-list)
[1669]450 (reduction +maxima-ring+ plist)))
[98]451
452(defmfun $poly_minimization (plist vars)
453 (with-parsed-polynomials ((vars) :poly-lists (plist)
454 :value-type :poly-list)
455 (minimization plist)))
456
457(defmfun $poly_normalize_list (plist vars)
458 (with-parsed-polynomials ((vars) :poly-lists (plist)
459 :value-type :poly-list)
[1669]460 (poly-normalize-list +maxima-ring+ plist)))
[98]461
462(defmfun $poly_grobner (f vars)
463 (with-parsed-polynomials ((vars) :poly-lists (f)
464 :value-type :poly-list)
[1669]465 (grobner +maxima-ring+ (remzero f))))
[98]466
467(defmfun $poly_reduced_grobner (f vars)
468 (with-parsed-polynomials ((vars) :poly-lists (f)
469 :value-type :poly-list)
[1669]470 (reduced-grobner +maxima-ring+ (remzero f))))
[98]471
472(defmfun $poly_depends_p (p var mvars
473 &aux (vars (coerce-maxima-list mvars))
474 (pos (position var vars)))
475 (if (null pos)
476 (merror "~%Variable ~M not in the list of variables ~M." var mvars)
477 (poly-depends-p (parse-poly p vars) pos)))
478
479(defmfun $poly_elimination_ideal (flist k vars)
480 (with-parsed-polynomials ((vars) :poly-lists (flist)
481 :value-type :poly-list)
[1669]482 (elimination-ideal +maxima-ring+ flist k nil 0)))
[98]483
484(defmfun $poly_colon_ideal (f g vars)
485 (with-parsed-polynomials ((vars) :poly-lists (f g) :value-type :poly-list)
[1669]486 (colon-ideal +maxima-ring+ f g nil)))
[98]487
488(defmfun $poly_ideal_intersection (f g vars)
489 (with-parsed-polynomials ((vars) :poly-lists (f g) :value-type :poly-list)
[1669]490 (ideal-intersection +maxima-ring+ f g nil)))
[98]491
492(defmfun $poly_lcm (f g vars)
493 (with-parsed-polynomials ((vars) :polynomials (f g) :value-type :polynomial)
[1669]494 (poly-lcm +maxima-ring+ f g)))
[98]495
496(defmfun $poly_gcd (f g vars)
497 ($first ($divide (m* f g) ($poly_lcm f g vars))))
498
499(defmfun $poly_grobner_equal (g1 g2 vars)
500 (with-parsed-polynomials ((vars) :poly-lists (g1 g2))
[1669]501 (grobner-equal +maxima-ring+ g1 g2)))
[98]502
503(defmfun $poly_grobner_subsetp (g1 g2 vars)
504 (with-parsed-polynomials ((vars) :poly-lists (g1 g2))
[1669]505 (grobner-subsetp +maxima-ring+ g1 g2)))
[98]506
507(defmfun $poly_grobner_member (p g vars)
508 (with-parsed-polynomials ((vars) :polynomials (p) :poly-lists (g))
[1669]509 (grobner-member +maxima-ring+ p g)))
[98]510
511(defmfun $poly_ideal_saturation1 (f p vars)
512 (with-parsed-polynomials ((vars) :poly-lists (f) :polynomials (p)
513 :value-type :poly-list)
[1669]514 (ideal-saturation-1 +maxima-ring+ f p 0)))
[98]515
516(defmfun $poly_saturation_extension (f plist vars new-vars)
517 (with-parsed-polynomials ((vars new-vars)
518 :poly-lists (f plist)
519 :value-type :poly-list)
[1669]520 (saturation-extension +maxima-ring+ f plist)))
[98]521
522(defmfun $poly_polysaturation_extension (f plist vars new-vars)
523 (with-parsed-polynomials ((vars new-vars)
524 :poly-lists (f plist)
525 :value-type :poly-list)
[1669]526 (polysaturation-extension +maxima-ring+ f plist)))
[98]527
528(defmfun $poly_ideal_polysaturation1 (f plist vars)
529 (with-parsed-polynomials ((vars) :poly-lists (f plist)
530 :value-type :poly-list)
[1669]531 (ideal-polysaturation-1 +maxima-ring+ f plist 0 nil)))
[98]532
533(defmfun $poly_ideal_saturation (f g vars)
534 (with-parsed-polynomials ((vars) :poly-lists (f g)
535 :value-type :poly-list)
[1669]536 (ideal-saturation +maxima-ring+ f g 0 nil)))
[98]537
538(defmfun $poly_ideal_polysaturation (f ideal-list vars)
539 (with-parsed-polynomials ((vars) :poly-lists (f)
540 :poly-list-lists (ideal-list)
541 :value-type :poly-list)
[1669]542 (ideal-polysaturation +maxima-ring+ f ideal-list 0 nil)))
[98]543
544(defmfun $poly_lt (f vars)
545 (with-parsed-polynomials ((vars) :polynomials (f) :value-type :polynomial)
546 (make-poly-from-termlist (list (poly-lt f)))))
547
548(defmfun $poly_lm (f vars)
549 (with-parsed-polynomials ((vars) :polynomials (f) :value-type :polynomial)
[1669]550 (make-poly-from-termlist (list (make-term (poly-lm f) (funcall (ring-unit +maxima-ring+)))))))
[98]551
[1640]552|#
Note: See TracBrowser for help on using the repository browser.