close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/mx-grobner.lisp@ 1711

Last change on this file since 1711 was 1711, checked in by Marek Rychlik, 10 years ago

* empty log message *

File size: 19.9 KB
RevLine 
[1201]1;;; -*- Mode: Lisp -*-
[98]2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
[133]22;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
23;;
[268]24;; Load this file into Maxima to bootstrap the Grobner package.
[390]25;; NOTE: This file does use symbols defined by Maxima, so it
26;; will not work when loaded in Common Lisp.
[133]27;;
[268]28;; DETAILS: This file implements an interface between the Grobner
[374]29;; basis package NGROBNER, which is a pure Common Lisp package, and
30;; Maxima. NGROBNER for efficiency uses its own representation of
31;; polynomials. Thus, it is necessary to convert Maxima representation
32;; to the internal representation and back. The facilities to do so
33;; are implemented in this file.
[268]34;;
[270]35;; Also, since the NGROBNER package consists of many Lisp files, it is
[375]36;; necessary to load the files. It is possible and preferrable to use
37;; ASDF for this purpose. The default is ASDF. It is also possible to
38;; simply used LOAD and COMPILE-FILE to accomplish this task.
[270]39;;
[133]40;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
41
[98]42(in-package :maxima)
43
[568]44(macsyma-module cgb-maxima)
[98]45
[568]46
[98]47(eval-when
48 #+gcl (load eval)
49 #-gcl (:load-toplevel :execute)
50 (format t "~&Loading maxima-grobner ~a ~a~%"
51 "$Revision: 2.0 $" "$Date: 2015/06/02 0:34:17 $"))
52
53;;FUNCTS is loaded because it contains the definition of LCM
[995]54($load "functs")
[568]55#+sbcl(progn (require 'asdf) (load "ngrobner.asd")(asdf:load-system :ngrobner))
[152]56
[571]57(use-package :ngrobner)
[274]58
[571]59
[98]60;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
61;;
62;; Maxima expression ring
63;;
64;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
[521]65;;
66;; This is how we perform operations on coefficients
67;; using Maxima functions.
68;;
69;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
70
[1669]71(defparameter +maxima-ring+
[230]72 (make-ring
[98]73 ;;(defun coeff-zerop (expr) (meval1 `(($is) (($equal) ,expr 0))))
74 :parse #'(lambda (expr)
75 (when modulus (setf expr ($rat expr)))
76 expr)
77 :unit #'(lambda () (if modulus ($rat 1) 1))
78 :zerop #'(lambda (expr)
79 ;;When is exactly a maxima expression equal to 0?
80 (cond ((numberp expr)
81 (= expr 0))
82 ((atom expr) nil)
83 (t
84 (case (caar expr)
85 (mrat (eql ($ratdisrep expr) 0))
86 (otherwise (eql ($totaldisrep expr) 0))))))
87 :add #'(lambda (x y) (m+ x y))
88 :sub #'(lambda (x y) (m- x y))
89 :uminus #'(lambda (x) (m- x))
90 :mul #'(lambda (x y) (m* x y))
91 ;;(defun coeff-div (x y) (cadr ($divide x y)))
92 :div #'(lambda (x y) (m// x y))
93 :lcm #'(lambda (x y) (meval1 `((|$LCM|) ,x ,y)))
94 :ezgcd #'(lambda (x y) (apply #'values (cdr ($ezgcd ($totaldisrep x) ($totaldisrep y)))))
95 ;; :gcd #'(lambda (x y) (second ($ezgcd x y)))))
96 :gcd #'(lambda (x y) ($gcd x y))))
97
[619]98;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
99;;
100;; Maxima expression parsing
101;;
102;;
103;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
104;;
105;; Functions and macros dealing with internal representation
106;; structure.
107;;
108;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
[114]109
[619]110(defun equal-test-p (expr1 expr2)
111 (alike1 expr1 expr2))
112
113(defun coerce-maxima-list (expr)
114 "Convert a Maxima list to Lisp list."
115 (cond
116 ((and (consp (car expr)) (eql (caar expr) 'mlist)) (cdr expr))
117 (t expr)))
118
119(defun free-of-vars (expr vars) (apply #'$freeof `(,@vars ,expr)))
120
[1642]121;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
122;;
123;; Order utilities
124;;
125;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
126
[1674]127(defun find-ring-by-name (ring)
[1644]128 "This function returns the ring structure bases on input symbol."
129 (cond
130 ((null ring) nil)
131 ((symbolp ring)
132 (case ring
[1650]133 ((maxima-ring :maxima-ring #:maxima-ring $expression_ring #:expression_ring)
[1669]134 +maxima-ring+)
135 ((ring-of-integers :ring-of-integers #:ring-of-integers $ring_of_integers) +ring-of-integers+)
[1644]136 (otherwise
137 (mtell "~%Warning: Ring ~M not found. Using default.~%" ring))))
138 (t
139 (mtell "~%Ring specification ~M is not recognized. Using default.~%" ring)
140 nil)))
141
[1674]142(defun find-order-by-name (order)
[1642]143 "This function returns the order function bases on its name."
144 (cond
145 ((null order) nil)
146 ((symbolp order)
147 (case order
[1650]148 ((lex :lex $lex #:lex)
[1649]149 #'lex>)
[1650]150 ((grlex :grlex $grlex #:grlex)
[1649]151 #'grlex>)
152 ((grevlex :grevlex $grevlex #:grevlex)
153 #'grevlex>)
[1650]154 ((invlex :invlex $invlex #:invlex)
[1649]155 #'invlex>)
[1642]156 (otherwise
157 (mtell "~%Warning: Order ~M not found. Using default.~%" order))))
158 (t
159 (mtell "~%Order specification ~M is not recognized. Using default.~%" order)
160 nil)))
161
[1703]162(defun find-ring-and-order-by-name (&optional
163 (ring (find-ring-by-name $poly_coefficient_ring))
164 (order (find-order-by-name $poly_monomial_order))
165 (primary-elimination-order (find-order-by-name $poly_primary_elimination_order))
166 (secondary-elimination-order (find-order-by-name $poly_secondary_elimination_order))
167 &aux
168 (ring-and-order (make-ring-and-order
169 :ring ring
170 :order order
171 :primary-elimination-order primary-elimination-order
172 :secondary-elimination-order secondary-elimination-order)))
173 ring-and-order)
174
[1644]175(defun maxima->poly (expr vars
[1703]176 &optional
177 (ring-and-order (find-ring-and-order-by-name))
178 &aux
[1709]179 (vars (coerce-maxima-list vars))
[1673]180 (ring (ro-ring ring-and-order)))
[1683]181 "Convert a maxima polynomial expression EXPR in variables VARS to
182internal form. This works by first converting the expression to Lisp,
[1685]183and then evaluating the expression using polynomial arithmetic
184implemented by the POLYNOMIAL package."
[1708]185 (labels ((parse (arg) (maxima->poly arg vars ring-and-order))
[619]186 (parse-list (args) (mapcar #'parse args)))
187 (cond
188 ((eql expr 0) (make-poly-zero))
189 ((member expr vars :test #'equal-test-p)
190 (let ((pos (position expr vars :test #'equal-test-p)))
[1710]191 (make-poly-variable ring (length vars) pos)))
[619]192 ((free-of-vars expr vars)
193 ;;This means that variable-free CRE and Poisson forms will be converted
194 ;;to coefficients intact
[1710]195 (coerce-coeff ring expr vars))
[619]196 (t
197 (case (caar expr)
[1654]198 (mplus (reduce #'(lambda (x y) (poly-add ring-and-order x y)) (parse-list (cdr expr))))
[1710]199 (mminus (poly-uminus ring (parse (cadr expr))))
[619]200 (mtimes
201 (if (endp (cddr expr)) ;unary
202 (parse (cdr expr))
[1655]203 (reduce #'(lambda (p q) (poly-mul ring-and-order p q)) (parse-list (cdr expr)))))
[619]204 (mexpt
205 (cond
206 ((member (cadr expr) vars :test #'equal-test-p)
207 ;;Special handling of (expt var pow)
208 (let ((pos (position (cadr expr) vars :test #'equal-test-p)))
[1710]209 (make-poly-variable ring (length vars) pos (caddr expr))))
[619]210 ((not (and (integerp (caddr expr)) (plusp (caddr expr))))
211 ;; Negative power means division in coefficient ring
212 ;; Non-integer power means non-polynomial coefficient
213 (mtell "~%Warning: Expression ~%~M~%contains power which is not a positive integer. Parsing as coefficient.~%"
214 expr)
[1710]215 (coerce-coeff ring expr vars))
216 (t (poly-expt ring (parse (cadr expr)) (caddr expr)))))
[619]217 (mrat (parse ($ratdisrep expr)))
218 (mpois (parse ($outofpois expr)))
219 (otherwise
[1710]220 (coerce-coeff ring expr vars)))))))
[619]221
[1696]222(defun maxima->poly-list (expr vars
[1711]223 &optional
224 (ring-and-order (find-ring-and-order-by-name)))
[1693]225 "Convert a Maxima representation of a list of polynomials to the internal form."
[619]226 (case (caar expr)
[1688]227 (mlist (mapcar #'(lambda (p)
[1706]228 (maxima->poly p vars ring-and-order))
[1688]229 (cdr expr)))
[1691]230 (otherwise (merror "Expression ~M is not a list of polynomials in variables ~M."
231 expr vars))))
[619]232
[1700]233(defun maxima->poly-list-of-lists (poly-list-of-lists vars
[1705]234 &optional
[1707]235 (ring-and-order (find-ring-and-order-by-name)))
[619]236 "Parse a Maxima representation of a list of lists of polynomials."
[1707]237 (mapcar #'(lambda (g) (maxima->poly-list g vars ring-and-order))
[1700]238 (coerce-maxima-list poly-list-of-lists)))
[619]239
240
[1688]241
[1701]242#|
[111]243;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
244;;
[241]245;; Conversion from internal form to Maxima general form
246;;
247;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
248
249(defun maxima-head ()
250 (if $poly_return_term_list
251 '(mlist)
252 '(mplus)))
253
254(defun coerce-to-maxima (poly-type object vars)
255 (case poly-type
256 (:polynomial
257 `(,(maxima-head) ,@(mapcar #'(lambda (term) (coerce-to-maxima :term term vars)) (poly-termlist object))))
258 (:poly-list
259 `((mlist) ,@(mapcar #'(lambda (p) (funcall *ratdisrep-fun* (coerce-to-maxima :polynomial p vars))) object)))
260 (:term
261 `((mtimes) ,(funcall *ratdisrep-fun* (term-coeff object))
262 ,@(mapcar #'(lambda (var power) `((mexpt) ,var ,power))
[882]263 vars (coerce (term-monom object) 'list))))
[241]264 ;; Assumes that Lisp and Maxima logicals coincide
265 (:logical object)
266 (otherwise
267 object)))
268
269
270;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
271;;
[111]272;; Unary and binary operation definition facility
273;;
274;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
[98]275
[111]276(defmacro define-unop (maxima-name fun-name
277 &optional (documentation nil documentation-supplied-p))
278 "Define a MAXIMA-level unary operator MAXIMA-NAME corresponding to unary function FUN-NAME."
279 `(defun ,maxima-name (p vars
280 &aux
281 (vars (coerce-maxima-list vars))
282 (p (parse-poly p vars)))
283 ,@(when documentation-supplied-p (list documentation))
[1669]284 (coerce-to-maxima :polynomial (,fun-name +maxima-ring+ p) vars)))
[111]285
286(defmacro define-binop (maxima-name fun-name
287 &optional (documentation nil documentation-supplied-p))
288 "Define a MAXIMA-level binary operator MAXIMA-NAME corresponding to binary function FUN-NAME."
289 `(defmfun ,maxima-name (p q vars
290 &aux
291 (vars (coerce-maxima-list vars))
292 (p (parse-poly p vars))
293 (q (parse-poly q vars)))
294 ,@(when documentation-supplied-p (list documentation))
[1669]295 (coerce-to-maxima :polynomial (,fun-name +maxima-ring+ p q) vars)))
[111]296
297
[219]298;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
299;;
300;; Facilities for evaluating Grobner package expressions
301;; within a prepared environment
302;;
303;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
304
305(defmacro with-monomial-order ((order) &body body)
306 "Evaluate BODY with monomial order set to ORDER."
307 `(let ((*monomial-order* (or (find-order ,order) *monomial-order*)))
308 . ,body))
309
310(defmacro with-coefficient-ring ((ring) &body body)
311 "Evaluate BODY with coefficient ring set to RING."
[1669]312 `(let ((+maxima-ring+ (or (find-ring ,ring) +maxima-ring+)))
[219]313 . ,body))
314
[863]315(defmacro with-ring-and-order ((ring order) &body body)
[830]316 "Evaluate BODY with monomial order set to ORDER and coefficient ring set to RING."
317 `(let ((*monomial-order* (or (find-order ,order) *monomial-order*))
[1669]318 (+maxima-ring+ (or (find-ring ,ring) +maxima-ring+)))
[830]319 . ,body))
320
[219]321(defmacro with-elimination-orders ((primary secondary elimination-order)
322 &body body)
323 "Evaluate BODY with primary and secondary elimination orders set to PRIMARY and SECONDARY."
324 `(let ((*primary-elimination-order* (or (find-order ,primary) *primary-elimination-order*))
325 (*secondary-elimination-order* (or (find-order ,secondary) *secondary-elimination-order*))
326 (*elimination-order* (or (find-order ,elimination-order) *elimination-order*)))
327 . ,body))
328
329
[98]330;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
331;;
332;; Maxima-level interface functions
333;;
334;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
335
336;; Auxillary function for removing zero polynomial
337(defun remzero (plist) (remove #'poly-zerop plist))
338
339;;Simple operators
340
341(define-binop $poly_add poly-add
342 "Adds two polynomials P and Q")
343
344(define-binop $poly_subtract poly-sub
345 "Subtracts a polynomial Q from P.")
346
347(define-binop $poly_multiply poly-mul
348 "Returns the product of polynomials P and Q.")
349
350(define-binop $poly_s_polynomial spoly
351 "Returns the syzygy polynomial (S-polynomial) of two polynomials P and Q.")
352
353(define-unop $poly_primitive_part poly-primitive-part
354 "Returns the polynomial P divided by GCD of its coefficients.")
355
356(define-unop $poly_normalize poly-normalize
357 "Returns the polynomial P divided by the leading coefficient.")
358
[222]359;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
360;;
361;; Macro facility for writing Maxima-level wrappers for
362;; functions operating on internal representation
363;;
364;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
365
366(defmacro with-parsed-polynomials (((maxima-vars &optional (maxima-new-vars nil new-vars-supplied-p))
367 &key (polynomials nil)
[1288]368 (poly-lists nil)
369 (poly-list-lists nil)
370 (value-type nil))
[222]371 &body body
372 &aux (vars (gensym))
[1288]373 (new-vars (gensym)))
[222]374 `(let ((,vars (coerce-maxima-list ,maxima-vars))
375 ,@(when new-vars-supplied-p
[1288]376 (list `(,new-vars (coerce-maxima-list ,maxima-new-vars)))))
[222]377 (coerce-to-maxima
378 ,value-type
379 (with-coefficient-ring ($poly_coefficient_ring)
380 (with-monomial-order ($poly_monomial_order)
381 (with-elimination-orders ($poly_primary_elimination_order
382 $poly_secondary_elimination_order
383 $poly_elimination_order)
384 (let ,(let ((args nil))
[1288]385 (dolist (p polynomials args)
386 (setf args (cons `(,p (parse-poly ,p ,vars)) args)))
387 (dolist (p poly-lists args)
388 (setf args (cons `(,p (parse-poly-list ,p ,vars)) args)))
389 (dolist (p poly-list-lists args)
390 (setf args (cons `(,p (parse-poly-list-list ,p ,vars)) args))))
[222]391 . ,body))))
392 ,(if new-vars-supplied-p
393 `(append ,vars ,new-vars)
[1288]394 vars))))
[222]395
396
[98]397;;Functions
398
399(defmfun $poly_expand (p vars)
400 "This function is equivalent to EXPAND(P) if P parses correctly to a polynomial.
401If the representation is not compatible with a polynomial in variables VARS,
402the result is an error."
403 (with-parsed-polynomials ((vars) :polynomials (p)
404 :value-type :polynomial)
405 p))
406
407(defmfun $poly_expt (p n vars)
408 (with-parsed-polynomials ((vars) :polynomials (p) :value-type :polynomial)
[1669]409 (poly-expt +maxima-ring+ p n)))
[98]410
411(defmfun $poly_content (p vars)
412 (with-parsed-polynomials ((vars) :polynomials (p))
[1669]413 (poly-content +maxima-ring+ p)))
[98]414
415(defmfun $poly_pseudo_divide (f fl vars
416 &aux (vars (coerce-maxima-list vars))
417 (f (parse-poly f vars))
418 (fl (parse-poly-list fl vars)))
419 (multiple-value-bind (quot rem c division-count)
[1669]420 (poly-pseudo-divide +maxima-ring+ f fl)
[98]421 `((mlist)
422 ,(coerce-to-maxima :poly-list quot vars)
423 ,(coerce-to-maxima :polynomial rem vars)
424 ,c
425 ,division-count)))
426
427(defmfun $poly_exact_divide (f g vars)
428 (with-parsed-polynomials ((vars) :polynomials (f g) :value-type :polynomial)
[1669]429 (poly-exact-divide +maxima-ring+ f g)))
[98]430
431(defmfun $poly_normal_form (f fl vars)
432 (with-parsed-polynomials ((vars) :polynomials (f)
433 :poly-lists (fl)
434 :value-type :polynomial)
[1669]435 (normal-form +maxima-ring+ f (remzero fl) nil)))
[98]436
437(defmfun $poly_buchberger_criterion (g vars)
438 (with-parsed-polynomials ((vars) :poly-lists (g) :value-type :logical)
[1669]439 (buchberger-criterion +maxima-ring+ g)))
[98]440
441(defmfun $poly_buchberger (fl vars)
442 (with-parsed-polynomials ((vars) :poly-lists (fl) :value-type :poly-list)
[1669]443 (buchberger +maxima-ring+ (remzero fl) 0 nil)))
[98]444
445(defmfun $poly_reduction (plist vars)
446 (with-parsed-polynomials ((vars) :poly-lists (plist)
447 :value-type :poly-list)
[1669]448 (reduction +maxima-ring+ plist)))
[98]449
450(defmfun $poly_minimization (plist vars)
451 (with-parsed-polynomials ((vars) :poly-lists (plist)
452 :value-type :poly-list)
453 (minimization plist)))
454
455(defmfun $poly_normalize_list (plist vars)
456 (with-parsed-polynomials ((vars) :poly-lists (plist)
457 :value-type :poly-list)
[1669]458 (poly-normalize-list +maxima-ring+ plist)))
[98]459
460(defmfun $poly_grobner (f vars)
461 (with-parsed-polynomials ((vars) :poly-lists (f)
462 :value-type :poly-list)
[1669]463 (grobner +maxima-ring+ (remzero f))))
[98]464
465(defmfun $poly_reduced_grobner (f vars)
466 (with-parsed-polynomials ((vars) :poly-lists (f)
467 :value-type :poly-list)
[1669]468 (reduced-grobner +maxima-ring+ (remzero f))))
[98]469
470(defmfun $poly_depends_p (p var mvars
471 &aux (vars (coerce-maxima-list mvars))
472 (pos (position var vars)))
473 (if (null pos)
474 (merror "~%Variable ~M not in the list of variables ~M." var mvars)
475 (poly-depends-p (parse-poly p vars) pos)))
476
477(defmfun $poly_elimination_ideal (flist k vars)
478 (with-parsed-polynomials ((vars) :poly-lists (flist)
479 :value-type :poly-list)
[1669]480 (elimination-ideal +maxima-ring+ flist k nil 0)))
[98]481
482(defmfun $poly_colon_ideal (f g vars)
483 (with-parsed-polynomials ((vars) :poly-lists (f g) :value-type :poly-list)
[1669]484 (colon-ideal +maxima-ring+ f g nil)))
[98]485
486(defmfun $poly_ideal_intersection (f g vars)
487 (with-parsed-polynomials ((vars) :poly-lists (f g) :value-type :poly-list)
[1669]488 (ideal-intersection +maxima-ring+ f g nil)))
[98]489
490(defmfun $poly_lcm (f g vars)
491 (with-parsed-polynomials ((vars) :polynomials (f g) :value-type :polynomial)
[1669]492 (poly-lcm +maxima-ring+ f g)))
[98]493
494(defmfun $poly_gcd (f g vars)
495 ($first ($divide (m* f g) ($poly_lcm f g vars))))
496
497(defmfun $poly_grobner_equal (g1 g2 vars)
498 (with-parsed-polynomials ((vars) :poly-lists (g1 g2))
[1669]499 (grobner-equal +maxima-ring+ g1 g2)))
[98]500
501(defmfun $poly_grobner_subsetp (g1 g2 vars)
502 (with-parsed-polynomials ((vars) :poly-lists (g1 g2))
[1669]503 (grobner-subsetp +maxima-ring+ g1 g2)))
[98]504
505(defmfun $poly_grobner_member (p g vars)
506 (with-parsed-polynomials ((vars) :polynomials (p) :poly-lists (g))
[1669]507 (grobner-member +maxima-ring+ p g)))
[98]508
509(defmfun $poly_ideal_saturation1 (f p vars)
510 (with-parsed-polynomials ((vars) :poly-lists (f) :polynomials (p)
511 :value-type :poly-list)
[1669]512 (ideal-saturation-1 +maxima-ring+ f p 0)))
[98]513
514(defmfun $poly_saturation_extension (f plist vars new-vars)
515 (with-parsed-polynomials ((vars new-vars)
516 :poly-lists (f plist)
517 :value-type :poly-list)
[1669]518 (saturation-extension +maxima-ring+ f plist)))
[98]519
520(defmfun $poly_polysaturation_extension (f plist vars new-vars)
521 (with-parsed-polynomials ((vars new-vars)
522 :poly-lists (f plist)
523 :value-type :poly-list)
[1669]524 (polysaturation-extension +maxima-ring+ f plist)))
[98]525
526(defmfun $poly_ideal_polysaturation1 (f plist vars)
527 (with-parsed-polynomials ((vars) :poly-lists (f plist)
528 :value-type :poly-list)
[1669]529 (ideal-polysaturation-1 +maxima-ring+ f plist 0 nil)))
[98]530
531(defmfun $poly_ideal_saturation (f g vars)
532 (with-parsed-polynomials ((vars) :poly-lists (f g)
533 :value-type :poly-list)
[1669]534 (ideal-saturation +maxima-ring+ f g 0 nil)))
[98]535
536(defmfun $poly_ideal_polysaturation (f ideal-list vars)
537 (with-parsed-polynomials ((vars) :poly-lists (f)
538 :poly-list-lists (ideal-list)
539 :value-type :poly-list)
[1669]540 (ideal-polysaturation +maxima-ring+ f ideal-list 0 nil)))
[98]541
542(defmfun $poly_lt (f vars)
543 (with-parsed-polynomials ((vars) :polynomials (f) :value-type :polynomial)
544 (make-poly-from-termlist (list (poly-lt f)))))
545
546(defmfun $poly_lm (f vars)
547 (with-parsed-polynomials ((vars) :polynomials (f) :value-type :polynomial)
[1669]548 (make-poly-from-termlist (list (make-term (poly-lm f) (funcall (ring-unit +maxima-ring+)))))))
[98]549
[1640]550|#
Note: See TracBrowser for help on using the repository browser.