close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/mx-grobner.lisp@ 1688

Last change on this file since 1688 was 1688, checked in by Marek Rychlik, 10 years ago

* empty log message *

File size: 20.1 KB
RevLine 
[1201]1;;; -*- Mode: Lisp -*-
[98]2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
[133]22;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
23;;
[268]24;; Load this file into Maxima to bootstrap the Grobner package.
[390]25;; NOTE: This file does use symbols defined by Maxima, so it
26;; will not work when loaded in Common Lisp.
[133]27;;
[268]28;; DETAILS: This file implements an interface between the Grobner
[374]29;; basis package NGROBNER, which is a pure Common Lisp package, and
30;; Maxima. NGROBNER for efficiency uses its own representation of
31;; polynomials. Thus, it is necessary to convert Maxima representation
32;; to the internal representation and back. The facilities to do so
33;; are implemented in this file.
[268]34;;
[270]35;; Also, since the NGROBNER package consists of many Lisp files, it is
[375]36;; necessary to load the files. It is possible and preferrable to use
37;; ASDF for this purpose. The default is ASDF. It is also possible to
38;; simply used LOAD and COMPILE-FILE to accomplish this task.
[270]39;;
[133]40;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
41
[98]42(in-package :maxima)
43
[568]44(macsyma-module cgb-maxima)
[98]45
[568]46
[98]47(eval-when
48 #+gcl (load eval)
49 #-gcl (:load-toplevel :execute)
50 (format t "~&Loading maxima-grobner ~a ~a~%"
51 "$Revision: 2.0 $" "$Date: 2015/06/02 0:34:17 $"))
52
53;;FUNCTS is loaded because it contains the definition of LCM
[995]54($load "functs")
[568]55#+sbcl(progn (require 'asdf) (load "ngrobner.asd")(asdf:load-system :ngrobner))
[152]56
[571]57(use-package :ngrobner)
[274]58
[571]59
[98]60;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
61;;
62;; Maxima expression ring
63;;
64;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
[521]65;;
66;; This is how we perform operations on coefficients
67;; using Maxima functions.
68;;
69;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
70
[1669]71(defparameter +maxima-ring+
[230]72 (make-ring
[98]73 ;;(defun coeff-zerop (expr) (meval1 `(($is) (($equal) ,expr 0))))
74 :parse #'(lambda (expr)
75 (when modulus (setf expr ($rat expr)))
76 expr)
77 :unit #'(lambda () (if modulus ($rat 1) 1))
78 :zerop #'(lambda (expr)
79 ;;When is exactly a maxima expression equal to 0?
80 (cond ((numberp expr)
81 (= expr 0))
82 ((atom expr) nil)
83 (t
84 (case (caar expr)
85 (mrat (eql ($ratdisrep expr) 0))
86 (otherwise (eql ($totaldisrep expr) 0))))))
87 :add #'(lambda (x y) (m+ x y))
88 :sub #'(lambda (x y) (m- x y))
89 :uminus #'(lambda (x) (m- x))
90 :mul #'(lambda (x y) (m* x y))
91 ;;(defun coeff-div (x y) (cadr ($divide x y)))
92 :div #'(lambda (x y) (m// x y))
93 :lcm #'(lambda (x y) (meval1 `((|$LCM|) ,x ,y)))
94 :ezgcd #'(lambda (x y) (apply #'values (cdr ($ezgcd ($totaldisrep x) ($totaldisrep y)))))
95 ;; :gcd #'(lambda (x y) (second ($ezgcd x y)))))
96 :gcd #'(lambda (x y) ($gcd x y))))
97
[619]98;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
99;;
100;; Maxima expression parsing
101;;
102;;
103;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
104;;
105;; Functions and macros dealing with internal representation
106;; structure.
107;;
108;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
[114]109
[619]110(defun equal-test-p (expr1 expr2)
111 (alike1 expr1 expr2))
112
113(defun coerce-maxima-list (expr)
114 "Convert a Maxima list to Lisp list."
115 (cond
116 ((and (consp (car expr)) (eql (caar expr) 'mlist)) (cdr expr))
117 (t expr)))
118
119(defun free-of-vars (expr vars) (apply #'$freeof `(,@vars ,expr)))
120
[1642]121;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
122;;
123;; Order utilities
124;;
125;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
126
[1674]127(defun find-ring-by-name (ring)
[1644]128 "This function returns the ring structure bases on input symbol."
129 (cond
130 ((null ring) nil)
131 ((symbolp ring)
132 (case ring
[1650]133 ((maxima-ring :maxima-ring #:maxima-ring $expression_ring #:expression_ring)
[1669]134 +maxima-ring+)
135 ((ring-of-integers :ring-of-integers #:ring-of-integers $ring_of_integers) +ring-of-integers+)
[1644]136 (otherwise
137 (mtell "~%Warning: Ring ~M not found. Using default.~%" ring))))
138 (t
139 (mtell "~%Ring specification ~M is not recognized. Using default.~%" ring)
140 nil)))
141
[1674]142(defun find-order-by-name (order)
[1642]143 "This function returns the order function bases on its name."
144 (cond
145 ((null order) nil)
146 ((symbolp order)
147 (case order
[1650]148 ((lex :lex $lex #:lex)
[1649]149 #'lex>)
[1650]150 ((grlex :grlex $grlex #:grlex)
[1649]151 #'grlex>)
152 ((grevlex :grevlex $grevlex #:grevlex)
153 #'grevlex>)
[1650]154 ((invlex :invlex $invlex #:invlex)
[1649]155 #'invlex>)
[1642]156 (otherwise
157 (mtell "~%Warning: Order ~M not found. Using default.~%" order))))
158 (t
159 (mtell "~%Order specification ~M is not recognized. Using default.~%" order)
160 nil)))
161
[1644]162(defun maxima->poly (expr vars
163 &optional
[1674]164 (ring (find-ring-by-name $poly_coefficient_ring))
165 (order (find-order-by-name $poly_monomial_order))
[1678]166 (primary-elimination-order (find-order-by-name $poly_primary_elimination_order))
167 (secondary-elimination-order (find-order-by-name $poly_secondary_elimination_order))
[1644]168 &aux
169 (vars (coerce-maxima-list vars))
[1652]170 (ring-and-order (make-ring-and-order
[1674]171 :ring ring
172 :order order
[1675]173 :primary-elimination-order primary-elimination-order
174 :secondary-elimination-order secondary-elimination-order))
[1673]175 (ring (ro-ring ring-and-order)))
[1683]176 "Convert a maxima polynomial expression EXPR in variables VARS to
177internal form. This works by first converting the expression to Lisp,
[1685]178and then evaluating the expression using polynomial arithmetic
179implemented by the POLYNOMIAL package."
[1687]180 (labels ((parse (arg) (maxima->poly arg vars
181 ring
182 order
[1686]183 primary-elimination-order
184 secondary-elimination-order))
[619]185 (parse-list (args) (mapcar #'parse args)))
186 (cond
187 ((eql expr 0) (make-poly-zero))
188 ((member expr vars :test #'equal-test-p)
189 (let ((pos (position expr vars :test #'equal-test-p)))
[1672]190 (make-poly-variable (ro-ring ring-and-order) (length vars) pos)))
[619]191 ((free-of-vars expr vars)
192 ;;This means that variable-free CRE and Poisson forms will be converted
193 ;;to coefficients intact
[1672]194 (coerce-coeff (ro-ring ring-and-order) expr vars))
[619]195 (t
196 (case (caar expr)
[1654]197 (mplus (reduce #'(lambda (x y) (poly-add ring-and-order x y)) (parse-list (cdr expr))))
[1672]198 (mminus (poly-uminus (ro-ring ring-and-order) (parse (cadr expr))))
[619]199 (mtimes
200 (if (endp (cddr expr)) ;unary
201 (parse (cdr expr))
[1655]202 (reduce #'(lambda (p q) (poly-mul ring-and-order p q)) (parse-list (cdr expr)))))
[619]203 (mexpt
204 (cond
205 ((member (cadr expr) vars :test #'equal-test-p)
206 ;;Special handling of (expt var pow)
207 (let ((pos (position (cadr expr) vars :test #'equal-test-p)))
[1672]208 (make-poly-variable (ro-ring ring-and-order) (length vars) pos (caddr expr))))
[619]209 ((not (and (integerp (caddr expr)) (plusp (caddr expr))))
210 ;; Negative power means division in coefficient ring
211 ;; Non-integer power means non-polynomial coefficient
212 (mtell "~%Warning: Expression ~%~M~%contains power which is not a positive integer. Parsing as coefficient.~%"
213 expr)
[1672]214 (coerce-coeff (ro-ring ring-and-order) expr vars))
215 (t (poly-expt (ro-ring ring-and-order) (parse (cadr expr)) (caddr expr)))))
[619]216 (mrat (parse ($ratdisrep expr)))
217 (mpois (parse ($outofpois expr)))
218 (otherwise
[1673]219 (coerce-coeff (ro-ring ring-and-order) expr vars)))))))
[619]220
[1688]221(defun parse-poly-list (expr vars
222 &optional
223 (ring (find-ring-by-name $poly_coefficient_ring))
224 (order (find-order-by-name $poly_monomial_order))
225 (primary-elimination-order (find-order-by-name $poly_primary_elimination_order))
226 (secondary-elimination-order (find-order-by-name $poly_secondary_elimination_order)))
[619]227 "Parse a Maxima representation of a list of polynomials."
228 (case (caar expr)
[1688]229 (mlist (mapcar #'(lambda (p)
230 (parse-poly p vars ring order primary-elimination-order secondary-elimination-order))
231 (cdr expr)))
[619]232 (t (merror "Expression ~M is not a list of polynomials in variables ~M."
233 expr vars))))
234
[1688]235#|
236
[619]237(defun parse-poly-list-list (poly-list-list vars)
238 "Parse a Maxima representation of a list of lists of polynomials."
239 (mapcar #'(lambda (g) (parse-poly-list g vars)) (coerce-maxima-list poly-list-list)))
240
241
[1688]242
243
[111]244;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
245;;
[241]246;; Conversion from internal form to Maxima general form
247;;
248;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
249
250(defun maxima-head ()
251 (if $poly_return_term_list
252 '(mlist)
253 '(mplus)))
254
255(defun coerce-to-maxima (poly-type object vars)
256 (case poly-type
257 (:polynomial
258 `(,(maxima-head) ,@(mapcar #'(lambda (term) (coerce-to-maxima :term term vars)) (poly-termlist object))))
259 (:poly-list
260 `((mlist) ,@(mapcar #'(lambda (p) (funcall *ratdisrep-fun* (coerce-to-maxima :polynomial p vars))) object)))
261 (:term
262 `((mtimes) ,(funcall *ratdisrep-fun* (term-coeff object))
263 ,@(mapcar #'(lambda (var power) `((mexpt) ,var ,power))
[882]264 vars (coerce (term-monom object) 'list))))
[241]265 ;; Assumes that Lisp and Maxima logicals coincide
266 (:logical object)
267 (otherwise
268 object)))
269
270
271;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
272;;
[111]273;; Unary and binary operation definition facility
274;;
275;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
[98]276
[111]277(defmacro define-unop (maxima-name fun-name
278 &optional (documentation nil documentation-supplied-p))
279 "Define a MAXIMA-level unary operator MAXIMA-NAME corresponding to unary function FUN-NAME."
280 `(defun ,maxima-name (p vars
281 &aux
282 (vars (coerce-maxima-list vars))
283 (p (parse-poly p vars)))
284 ,@(when documentation-supplied-p (list documentation))
[1669]285 (coerce-to-maxima :polynomial (,fun-name +maxima-ring+ p) vars)))
[111]286
287(defmacro define-binop (maxima-name fun-name
288 &optional (documentation nil documentation-supplied-p))
289 "Define a MAXIMA-level binary operator MAXIMA-NAME corresponding to binary function FUN-NAME."
290 `(defmfun ,maxima-name (p q vars
291 &aux
292 (vars (coerce-maxima-list vars))
293 (p (parse-poly p vars))
294 (q (parse-poly q vars)))
295 ,@(when documentation-supplied-p (list documentation))
[1669]296 (coerce-to-maxima :polynomial (,fun-name +maxima-ring+ p q) vars)))
[111]297
298
[219]299;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
300;;
301;; Facilities for evaluating Grobner package expressions
302;; within a prepared environment
303;;
304;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
305
306(defmacro with-monomial-order ((order) &body body)
307 "Evaluate BODY with monomial order set to ORDER."
308 `(let ((*monomial-order* (or (find-order ,order) *monomial-order*)))
309 . ,body))
310
311(defmacro with-coefficient-ring ((ring) &body body)
312 "Evaluate BODY with coefficient ring set to RING."
[1669]313 `(let ((+maxima-ring+ (or (find-ring ,ring) +maxima-ring+)))
[219]314 . ,body))
315
[863]316(defmacro with-ring-and-order ((ring order) &body body)
[830]317 "Evaluate BODY with monomial order set to ORDER and coefficient ring set to RING."
318 `(let ((*monomial-order* (or (find-order ,order) *monomial-order*))
[1669]319 (+maxima-ring+ (or (find-ring ,ring) +maxima-ring+)))
[830]320 . ,body))
321
[219]322(defmacro with-elimination-orders ((primary secondary elimination-order)
323 &body body)
324 "Evaluate BODY with primary and secondary elimination orders set to PRIMARY and SECONDARY."
325 `(let ((*primary-elimination-order* (or (find-order ,primary) *primary-elimination-order*))
326 (*secondary-elimination-order* (or (find-order ,secondary) *secondary-elimination-order*))
327 (*elimination-order* (or (find-order ,elimination-order) *elimination-order*)))
328 . ,body))
329
330
[98]331;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
332;;
333;; Maxima-level interface functions
334;;
335;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
336
337;; Auxillary function for removing zero polynomial
338(defun remzero (plist) (remove #'poly-zerop plist))
339
340;;Simple operators
341
342(define-binop $poly_add poly-add
343 "Adds two polynomials P and Q")
344
345(define-binop $poly_subtract poly-sub
346 "Subtracts a polynomial Q from P.")
347
348(define-binop $poly_multiply poly-mul
349 "Returns the product of polynomials P and Q.")
350
351(define-binop $poly_s_polynomial spoly
352 "Returns the syzygy polynomial (S-polynomial) of two polynomials P and Q.")
353
354(define-unop $poly_primitive_part poly-primitive-part
355 "Returns the polynomial P divided by GCD of its coefficients.")
356
357(define-unop $poly_normalize poly-normalize
358 "Returns the polynomial P divided by the leading coefficient.")
359
[222]360;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
361;;
362;; Macro facility for writing Maxima-level wrappers for
363;; functions operating on internal representation
364;;
365;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
366
367(defmacro with-parsed-polynomials (((maxima-vars &optional (maxima-new-vars nil new-vars-supplied-p))
368 &key (polynomials nil)
[1288]369 (poly-lists nil)
370 (poly-list-lists nil)
371 (value-type nil))
[222]372 &body body
373 &aux (vars (gensym))
[1288]374 (new-vars (gensym)))
[222]375 `(let ((,vars (coerce-maxima-list ,maxima-vars))
376 ,@(when new-vars-supplied-p
[1288]377 (list `(,new-vars (coerce-maxima-list ,maxima-new-vars)))))
[222]378 (coerce-to-maxima
379 ,value-type
380 (with-coefficient-ring ($poly_coefficient_ring)
381 (with-monomial-order ($poly_monomial_order)
382 (with-elimination-orders ($poly_primary_elimination_order
383 $poly_secondary_elimination_order
384 $poly_elimination_order)
385 (let ,(let ((args nil))
[1288]386 (dolist (p polynomials args)
387 (setf args (cons `(,p (parse-poly ,p ,vars)) args)))
388 (dolist (p poly-lists args)
389 (setf args (cons `(,p (parse-poly-list ,p ,vars)) args)))
390 (dolist (p poly-list-lists args)
391 (setf args (cons `(,p (parse-poly-list-list ,p ,vars)) args))))
[222]392 . ,body))))
393 ,(if new-vars-supplied-p
394 `(append ,vars ,new-vars)
[1288]395 vars))))
[222]396
397
[98]398;;Functions
399
400(defmfun $poly_expand (p vars)
401 "This function is equivalent to EXPAND(P) if P parses correctly to a polynomial.
402If the representation is not compatible with a polynomial in variables VARS,
403the result is an error."
404 (with-parsed-polynomials ((vars) :polynomials (p)
405 :value-type :polynomial)
406 p))
407
408(defmfun $poly_expt (p n vars)
409 (with-parsed-polynomials ((vars) :polynomials (p) :value-type :polynomial)
[1669]410 (poly-expt +maxima-ring+ p n)))
[98]411
412(defmfun $poly_content (p vars)
413 (with-parsed-polynomials ((vars) :polynomials (p))
[1669]414 (poly-content +maxima-ring+ p)))
[98]415
416(defmfun $poly_pseudo_divide (f fl vars
417 &aux (vars (coerce-maxima-list vars))
418 (f (parse-poly f vars))
419 (fl (parse-poly-list fl vars)))
420 (multiple-value-bind (quot rem c division-count)
[1669]421 (poly-pseudo-divide +maxima-ring+ f fl)
[98]422 `((mlist)
423 ,(coerce-to-maxima :poly-list quot vars)
424 ,(coerce-to-maxima :polynomial rem vars)
425 ,c
426 ,division-count)))
427
428(defmfun $poly_exact_divide (f g vars)
429 (with-parsed-polynomials ((vars) :polynomials (f g) :value-type :polynomial)
[1669]430 (poly-exact-divide +maxima-ring+ f g)))
[98]431
432(defmfun $poly_normal_form (f fl vars)
433 (with-parsed-polynomials ((vars) :polynomials (f)
434 :poly-lists (fl)
435 :value-type :polynomial)
[1669]436 (normal-form +maxima-ring+ f (remzero fl) nil)))
[98]437
438(defmfun $poly_buchberger_criterion (g vars)
439 (with-parsed-polynomials ((vars) :poly-lists (g) :value-type :logical)
[1669]440 (buchberger-criterion +maxima-ring+ g)))
[98]441
442(defmfun $poly_buchberger (fl vars)
443 (with-parsed-polynomials ((vars) :poly-lists (fl) :value-type :poly-list)
[1669]444 (buchberger +maxima-ring+ (remzero fl) 0 nil)))
[98]445
446(defmfun $poly_reduction (plist vars)
447 (with-parsed-polynomials ((vars) :poly-lists (plist)
448 :value-type :poly-list)
[1669]449 (reduction +maxima-ring+ plist)))
[98]450
451(defmfun $poly_minimization (plist vars)
452 (with-parsed-polynomials ((vars) :poly-lists (plist)
453 :value-type :poly-list)
454 (minimization plist)))
455
456(defmfun $poly_normalize_list (plist vars)
457 (with-parsed-polynomials ((vars) :poly-lists (plist)
458 :value-type :poly-list)
[1669]459 (poly-normalize-list +maxima-ring+ plist)))
[98]460
461(defmfun $poly_grobner (f vars)
462 (with-parsed-polynomials ((vars) :poly-lists (f)
463 :value-type :poly-list)
[1669]464 (grobner +maxima-ring+ (remzero f))))
[98]465
466(defmfun $poly_reduced_grobner (f vars)
467 (with-parsed-polynomials ((vars) :poly-lists (f)
468 :value-type :poly-list)
[1669]469 (reduced-grobner +maxima-ring+ (remzero f))))
[98]470
471(defmfun $poly_depends_p (p var mvars
472 &aux (vars (coerce-maxima-list mvars))
473 (pos (position var vars)))
474 (if (null pos)
475 (merror "~%Variable ~M not in the list of variables ~M." var mvars)
476 (poly-depends-p (parse-poly p vars) pos)))
477
478(defmfun $poly_elimination_ideal (flist k vars)
479 (with-parsed-polynomials ((vars) :poly-lists (flist)
480 :value-type :poly-list)
[1669]481 (elimination-ideal +maxima-ring+ flist k nil 0)))
[98]482
483(defmfun $poly_colon_ideal (f g vars)
484 (with-parsed-polynomials ((vars) :poly-lists (f g) :value-type :poly-list)
[1669]485 (colon-ideal +maxima-ring+ f g nil)))
[98]486
487(defmfun $poly_ideal_intersection (f g vars)
488 (with-parsed-polynomials ((vars) :poly-lists (f g) :value-type :poly-list)
[1669]489 (ideal-intersection +maxima-ring+ f g nil)))
[98]490
491(defmfun $poly_lcm (f g vars)
492 (with-parsed-polynomials ((vars) :polynomials (f g) :value-type :polynomial)
[1669]493 (poly-lcm +maxima-ring+ f g)))
[98]494
495(defmfun $poly_gcd (f g vars)
496 ($first ($divide (m* f g) ($poly_lcm f g vars))))
497
498(defmfun $poly_grobner_equal (g1 g2 vars)
499 (with-parsed-polynomials ((vars) :poly-lists (g1 g2))
[1669]500 (grobner-equal +maxima-ring+ g1 g2)))
[98]501
502(defmfun $poly_grobner_subsetp (g1 g2 vars)
503 (with-parsed-polynomials ((vars) :poly-lists (g1 g2))
[1669]504 (grobner-subsetp +maxima-ring+ g1 g2)))
[98]505
506(defmfun $poly_grobner_member (p g vars)
507 (with-parsed-polynomials ((vars) :polynomials (p) :poly-lists (g))
[1669]508 (grobner-member +maxima-ring+ p g)))
[98]509
510(defmfun $poly_ideal_saturation1 (f p vars)
511 (with-parsed-polynomials ((vars) :poly-lists (f) :polynomials (p)
512 :value-type :poly-list)
[1669]513 (ideal-saturation-1 +maxima-ring+ f p 0)))
[98]514
515(defmfun $poly_saturation_extension (f plist vars new-vars)
516 (with-parsed-polynomials ((vars new-vars)
517 :poly-lists (f plist)
518 :value-type :poly-list)
[1669]519 (saturation-extension +maxima-ring+ f plist)))
[98]520
521(defmfun $poly_polysaturation_extension (f plist vars new-vars)
522 (with-parsed-polynomials ((vars new-vars)
523 :poly-lists (f plist)
524 :value-type :poly-list)
[1669]525 (polysaturation-extension +maxima-ring+ f plist)))
[98]526
527(defmfun $poly_ideal_polysaturation1 (f plist vars)
528 (with-parsed-polynomials ((vars) :poly-lists (f plist)
529 :value-type :poly-list)
[1669]530 (ideal-polysaturation-1 +maxima-ring+ f plist 0 nil)))
[98]531
532(defmfun $poly_ideal_saturation (f g vars)
533 (with-parsed-polynomials ((vars) :poly-lists (f g)
534 :value-type :poly-list)
[1669]535 (ideal-saturation +maxima-ring+ f g 0 nil)))
[98]536
537(defmfun $poly_ideal_polysaturation (f ideal-list vars)
538 (with-parsed-polynomials ((vars) :poly-lists (f)
539 :poly-list-lists (ideal-list)
540 :value-type :poly-list)
[1669]541 (ideal-polysaturation +maxima-ring+ f ideal-list 0 nil)))
[98]542
543(defmfun $poly_lt (f vars)
544 (with-parsed-polynomials ((vars) :polynomials (f) :value-type :polynomial)
545 (make-poly-from-termlist (list (poly-lt f)))))
546
547(defmfun $poly_lm (f vars)
548 (with-parsed-polynomials ((vars) :polynomials (f) :value-type :polynomial)
[1669]549 (make-poly-from-termlist (list (make-term (poly-lm f) (funcall (ring-unit +maxima-ring+)))))))
[98]550
[1640]551|#
Note: See TracBrowser for help on using the repository browser.