close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/mx-grobner.lisp@ 1640

Last change on this file since 1640 was 1640, checked in by Marek Rychlik, 9 years ago

* empty log message *

File size: 18.9 KB
RevLine 
[1201]1;;; -*- Mode: Lisp -*-
[98]2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
[133]22;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
23;;
[268]24;; Load this file into Maxima to bootstrap the Grobner package.
[390]25;; NOTE: This file does use symbols defined by Maxima, so it
26;; will not work when loaded in Common Lisp.
[133]27;;
[268]28;; DETAILS: This file implements an interface between the Grobner
[374]29;; basis package NGROBNER, which is a pure Common Lisp package, and
30;; Maxima. NGROBNER for efficiency uses its own representation of
31;; polynomials. Thus, it is necessary to convert Maxima representation
32;; to the internal representation and back. The facilities to do so
33;; are implemented in this file.
[268]34;;
[270]35;; Also, since the NGROBNER package consists of many Lisp files, it is
[375]36;; necessary to load the files. It is possible and preferrable to use
37;; ASDF for this purpose. The default is ASDF. It is also possible to
38;; simply used LOAD and COMPILE-FILE to accomplish this task.
[270]39;;
[133]40;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
41
[98]42(in-package :maxima)
43
[568]44(macsyma-module cgb-maxima)
[98]45
[568]46
[98]47(eval-when
48 #+gcl (load eval)
49 #-gcl (:load-toplevel :execute)
50 (format t "~&Loading maxima-grobner ~a ~a~%"
51 "$Revision: 2.0 $" "$Date: 2015/06/02 0:34:17 $"))
52
53;;FUNCTS is loaded because it contains the definition of LCM
[995]54($load "functs")
[568]55#+sbcl(progn (require 'asdf) (load "ngrobner.asd")(asdf:load-system :ngrobner))
[152]56
[571]57(use-package :ngrobner)
[274]58
[571]59
[98]60;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
61;;
62;; Maxima expression ring
63;;
64;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
[521]65;;
66;; This is how we perform operations on coefficients
67;; using Maxima functions.
68;;
69;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
70
[230]71(defparameter *maxima-ring*
72 (make-ring
[98]73 ;;(defun coeff-zerop (expr) (meval1 `(($is) (($equal) ,expr 0))))
74 :parse #'(lambda (expr)
75 (when modulus (setf expr ($rat expr)))
76 expr)
77 :unit #'(lambda () (if modulus ($rat 1) 1))
78 :zerop #'(lambda (expr)
79 ;;When is exactly a maxima expression equal to 0?
80 (cond ((numberp expr)
81 (= expr 0))
82 ((atom expr) nil)
83 (t
84 (case (caar expr)
85 (mrat (eql ($ratdisrep expr) 0))
86 (otherwise (eql ($totaldisrep expr) 0))))))
87 :add #'(lambda (x y) (m+ x y))
88 :sub #'(lambda (x y) (m- x y))
89 :uminus #'(lambda (x) (m- x))
90 :mul #'(lambda (x y) (m* x y))
91 ;;(defun coeff-div (x y) (cadr ($divide x y)))
92 :div #'(lambda (x y) (m// x y))
93 :lcm #'(lambda (x y) (meval1 `((|$LCM|) ,x ,y)))
94 :ezgcd #'(lambda (x y) (apply #'values (cdr ($ezgcd ($totaldisrep x) ($totaldisrep y)))))
95 ;; :gcd #'(lambda (x y) (second ($ezgcd x y)))))
96 :gcd #'(lambda (x y) ($gcd x y))))
97
[619]98;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
99;;
100;; Maxima expression parsing
101;;
102;;
103;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
104;;
105;; Functions and macros dealing with internal representation
106;; structure.
107;;
108;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
[114]109
[619]110(defun equal-test-p (expr1 expr2)
111 (alike1 expr1 expr2))
112
113(defun coerce-maxima-list (expr)
114 "Convert a Maxima list to Lisp list."
115 (cond
116 ((and (consp (car expr)) (eql (caar expr) 'mlist)) (cdr expr))
117 (t expr)))
118
119(defun free-of-vars (expr vars) (apply #'$freeof `(,@vars ,expr)))
120
121(defun parse-poly (expr vars &aux (vars (coerce-maxima-list vars)))
122 "Convert a maxima polynomial expression EXPR in variables VARS to internal form."
123 (labels ((parse (arg) (parse-poly arg vars))
124 (parse-list (args) (mapcar #'parse args)))
125 (cond
126 ((eql expr 0) (make-poly-zero))
127 ((member expr vars :test #'equal-test-p)
128 (let ((pos (position expr vars :test #'equal-test-p)))
[1002]129 (make-variable *maxima-ring* (length vars) pos)))
[619]130 ((free-of-vars expr vars)
131 ;;This means that variable-free CRE and Poisson forms will be converted
132 ;;to coefficients intact
[1002]133 (coerce-coeff *maxima-ring* expr vars))
[619]134 (t
135 (case (caar expr)
[1002]136 (mplus (reduce #'(lambda (x y) (poly-add *maxima-ring* x y)) (parse-list (cdr expr))))
137 (mminus (poly-uminus *maxima-ring* (parse (cadr expr))))
[619]138 (mtimes
139 (if (endp (cddr expr)) ;unary
140 (parse (cdr expr))
[1002]141 (reduce #'(lambda (p q) (poly-mul *maxima-ring* p q)) (parse-list (cdr expr)))))
[619]142 (mexpt
143 (cond
144 ((member (cadr expr) vars :test #'equal-test-p)
145 ;;Special handling of (expt var pow)
146 (let ((pos (position (cadr expr) vars :test #'equal-test-p)))
[1002]147 (make-variable *maxima-ring* (length vars) pos (caddr expr))))
[619]148 ((not (and (integerp (caddr expr)) (plusp (caddr expr))))
149 ;; Negative power means division in coefficient ring
150 ;; Non-integer power means non-polynomial coefficient
151 (mtell "~%Warning: Expression ~%~M~%contains power which is not a positive integer. Parsing as coefficient.~%"
152 expr)
[1002]153 (coerce-coeff *maxima-ring* expr vars))
154 (t (poly-expt *maxima-ring* (parse (cadr expr)) (caddr expr)))))
[619]155 (mrat (parse ($ratdisrep expr)))
156 (mpois (parse ($outofpois expr)))
157 (otherwise
[1002]158 (coerce-coeff *maxima-ring* expr vars)))))))
[619]159
[1640]160#|
161
[619]162(defun parse-poly-list (expr vars)
163 "Parse a Maxima representation of a list of polynomials."
164 (case (caar expr)
165 (mlist (mapcar #'(lambda (p) (parse-poly p vars)) (cdr expr)))
166 (t (merror "Expression ~M is not a list of polynomials in variables ~M."
167 expr vars))))
168
169(defun parse-poly-list-list (poly-list-list vars)
170 "Parse a Maxima representation of a list of lists of polynomials."
171 (mapcar #'(lambda (g) (parse-poly-list g vars)) (coerce-maxima-list poly-list-list)))
172
173
[111]174;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
175;;
[241]176;; Conversion from internal form to Maxima general form
177;;
178;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
179
180(defun maxima-head ()
181 (if $poly_return_term_list
182 '(mlist)
183 '(mplus)))
184
185(defun coerce-to-maxima (poly-type object vars)
186 (case poly-type
187 (:polynomial
188 `(,(maxima-head) ,@(mapcar #'(lambda (term) (coerce-to-maxima :term term vars)) (poly-termlist object))))
189 (:poly-list
190 `((mlist) ,@(mapcar #'(lambda (p) (funcall *ratdisrep-fun* (coerce-to-maxima :polynomial p vars))) object)))
191 (:term
192 `((mtimes) ,(funcall *ratdisrep-fun* (term-coeff object))
193 ,@(mapcar #'(lambda (var power) `((mexpt) ,var ,power))
[882]194 vars (coerce (term-monom object) 'list))))
[241]195 ;; Assumes that Lisp and Maxima logicals coincide
196 (:logical object)
197 (otherwise
198 object)))
199
200
201;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
202;;
[111]203;; Unary and binary operation definition facility
204;;
205;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
[98]206
[111]207(defmacro define-unop (maxima-name fun-name
208 &optional (documentation nil documentation-supplied-p))
209 "Define a MAXIMA-level unary operator MAXIMA-NAME corresponding to unary function FUN-NAME."
210 `(defun ,maxima-name (p vars
211 &aux
212 (vars (coerce-maxima-list vars))
213 (p (parse-poly p vars)))
214 ,@(when documentation-supplied-p (list documentation))
[1002]215 (coerce-to-maxima :polynomial (,fun-name *maxima-ring* p) vars)))
[111]216
217(defmacro define-binop (maxima-name fun-name
218 &optional (documentation nil documentation-supplied-p))
219 "Define a MAXIMA-level binary operator MAXIMA-NAME corresponding to binary function FUN-NAME."
220 `(defmfun ,maxima-name (p q vars
221 &aux
222 (vars (coerce-maxima-list vars))
223 (p (parse-poly p vars))
224 (q (parse-poly q vars)))
225 ,@(when documentation-supplied-p (list documentation))
[1002]226 (coerce-to-maxima :polynomial (,fun-name *maxima-ring* p q) vars)))
[111]227
228
[998]229;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
230;;
231;; Order utilities
232;;
233;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
234
235(defun find-order (order)
236 "This function returns the order function bases on its name."
237 (cond
238 ((null order) nil)
239 ((symbolp order)
240 (case order
241 ((lex :lex $lex) #'lex>)
242 ((grlex :grlex $grlex) #'grlex>)
243 ((grevlex :grevlex $grevlex) #'grevlex>)
244 ((invlex :invlex $invlex) #'invlex>)
245 ((elimination-order-1 :elimination-order-1 elimination_order_1) #'elimination-order-1)
246 (otherwise
247 (mtell "~%Warning: Order ~M not found. Using default.~%" order))))
248 (t
249 (mtell "~%Order specification ~M is not recognized. Using default.~%" order)
250 nil)))
251
252;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
253;;
254;; Ring utilities
255;;
256;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
257
258(defun find-ring (ring)
259 "This function returns the ring structure bases on input symbol."
260 (cond
261 ((null ring) nil)
262 ((symbolp ring)
263 (case ring
[1002]264 ((maxima-ring :maxima-ring $expression_ring) *maxima-ring*)
[998]265 ((ring-of-integers :ring-of-integers $ring_of_integers) *ring-of-integers*)
266 (otherwise
267 (mtell "~%Warning: Ring ~M not found. Using default.~%" ring))))
268 (t
[999]269 (mtell "~%Ring specification ~M is not recognized. Using default.~%" ring)
[998]270 nil)))
271
272
[219]273;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
274;;
275;; Facilities for evaluating Grobner package expressions
276;; within a prepared environment
277;;
278;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
279
280(defmacro with-monomial-order ((order) &body body)
281 "Evaluate BODY with monomial order set to ORDER."
282 `(let ((*monomial-order* (or (find-order ,order) *monomial-order*)))
283 . ,body))
284
285(defmacro with-coefficient-ring ((ring) &body body)
286 "Evaluate BODY with coefficient ring set to RING."
[1002]287 `(let ((*maxima-ring* (or (find-ring ,ring) *maxima-ring*)))
[219]288 . ,body))
289
[863]290(defmacro with-ring-and-order ((ring order) &body body)
[830]291 "Evaluate BODY with monomial order set to ORDER and coefficient ring set to RING."
292 `(let ((*monomial-order* (or (find-order ,order) *monomial-order*))
[1002]293 (*maxima-ring* (or (find-ring ,ring) *maxima-ring*)))
[830]294 . ,body))
295
[219]296(defmacro with-elimination-orders ((primary secondary elimination-order)
297 &body body)
298 "Evaluate BODY with primary and secondary elimination orders set to PRIMARY and SECONDARY."
299 `(let ((*primary-elimination-order* (or (find-order ,primary) *primary-elimination-order*))
300 (*secondary-elimination-order* (or (find-order ,secondary) *secondary-elimination-order*))
301 (*elimination-order* (or (find-order ,elimination-order) *elimination-order*)))
302 . ,body))
303
304
[98]305;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
306;;
307;; Maxima-level interface functions
308;;
309;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
310
311;; Auxillary function for removing zero polynomial
312(defun remzero (plist) (remove #'poly-zerop plist))
313
314;;Simple operators
315
316(define-binop $poly_add poly-add
317 "Adds two polynomials P and Q")
318
319(define-binop $poly_subtract poly-sub
320 "Subtracts a polynomial Q from P.")
321
322(define-binop $poly_multiply poly-mul
323 "Returns the product of polynomials P and Q.")
324
325(define-binop $poly_s_polynomial spoly
326 "Returns the syzygy polynomial (S-polynomial) of two polynomials P and Q.")
327
328(define-unop $poly_primitive_part poly-primitive-part
329 "Returns the polynomial P divided by GCD of its coefficients.")
330
331(define-unop $poly_normalize poly-normalize
332 "Returns the polynomial P divided by the leading coefficient.")
333
[222]334;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
335;;
336;; Macro facility for writing Maxima-level wrappers for
337;; functions operating on internal representation
338;;
339;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
340
341(defmacro with-parsed-polynomials (((maxima-vars &optional (maxima-new-vars nil new-vars-supplied-p))
342 &key (polynomials nil)
[1288]343 (poly-lists nil)
344 (poly-list-lists nil)
345 (value-type nil))
[222]346 &body body
347 &aux (vars (gensym))
[1288]348 (new-vars (gensym)))
[222]349 `(let ((,vars (coerce-maxima-list ,maxima-vars))
350 ,@(when new-vars-supplied-p
[1288]351 (list `(,new-vars (coerce-maxima-list ,maxima-new-vars)))))
[222]352 (coerce-to-maxima
353 ,value-type
354 (with-coefficient-ring ($poly_coefficient_ring)
355 (with-monomial-order ($poly_monomial_order)
356 (with-elimination-orders ($poly_primary_elimination_order
357 $poly_secondary_elimination_order
358 $poly_elimination_order)
359 (let ,(let ((args nil))
[1288]360 (dolist (p polynomials args)
361 (setf args (cons `(,p (parse-poly ,p ,vars)) args)))
362 (dolist (p poly-lists args)
363 (setf args (cons `(,p (parse-poly-list ,p ,vars)) args)))
364 (dolist (p poly-list-lists args)
365 (setf args (cons `(,p (parse-poly-list-list ,p ,vars)) args))))
[222]366 . ,body))))
367 ,(if new-vars-supplied-p
368 `(append ,vars ,new-vars)
[1288]369 vars))))
[222]370
371
[98]372;;Functions
373
374(defmfun $poly_expand (p vars)
375 "This function is equivalent to EXPAND(P) if P parses correctly to a polynomial.
376If the representation is not compatible with a polynomial in variables VARS,
377the result is an error."
378 (with-parsed-polynomials ((vars) :polynomials (p)
379 :value-type :polynomial)
380 p))
381
382(defmfun $poly_expt (p n vars)
383 (with-parsed-polynomials ((vars) :polynomials (p) :value-type :polynomial)
[1002]384 (poly-expt *maxima-ring* p n)))
[98]385
386(defmfun $poly_content (p vars)
387 (with-parsed-polynomials ((vars) :polynomials (p))
[1002]388 (poly-content *maxima-ring* p)))
[98]389
390(defmfun $poly_pseudo_divide (f fl vars
391 &aux (vars (coerce-maxima-list vars))
392 (f (parse-poly f vars))
393 (fl (parse-poly-list fl vars)))
394 (multiple-value-bind (quot rem c division-count)
[1002]395 (poly-pseudo-divide *maxima-ring* f fl)
[98]396 `((mlist)
397 ,(coerce-to-maxima :poly-list quot vars)
398 ,(coerce-to-maxima :polynomial rem vars)
399 ,c
400 ,division-count)))
401
402(defmfun $poly_exact_divide (f g vars)
403 (with-parsed-polynomials ((vars) :polynomials (f g) :value-type :polynomial)
[1002]404 (poly-exact-divide *maxima-ring* f g)))
[98]405
406(defmfun $poly_normal_form (f fl vars)
407 (with-parsed-polynomials ((vars) :polynomials (f)
408 :poly-lists (fl)
409 :value-type :polynomial)
[1002]410 (normal-form *maxima-ring* f (remzero fl) nil)))
[98]411
412(defmfun $poly_buchberger_criterion (g vars)
413 (with-parsed-polynomials ((vars) :poly-lists (g) :value-type :logical)
[1002]414 (buchberger-criterion *maxima-ring* g)))
[98]415
416(defmfun $poly_buchberger (fl vars)
417 (with-parsed-polynomials ((vars) :poly-lists (fl) :value-type :poly-list)
[1002]418 (buchberger *maxima-ring* (remzero fl) 0 nil)))
[98]419
420(defmfun $poly_reduction (plist vars)
421 (with-parsed-polynomials ((vars) :poly-lists (plist)
422 :value-type :poly-list)
[1002]423 (reduction *maxima-ring* plist)))
[98]424
425(defmfun $poly_minimization (plist vars)
426 (with-parsed-polynomials ((vars) :poly-lists (plist)
427 :value-type :poly-list)
428 (minimization plist)))
429
430(defmfun $poly_normalize_list (plist vars)
431 (with-parsed-polynomials ((vars) :poly-lists (plist)
432 :value-type :poly-list)
[1002]433 (poly-normalize-list *maxima-ring* plist)))
[98]434
435(defmfun $poly_grobner (f vars)
436 (with-parsed-polynomials ((vars) :poly-lists (f)
437 :value-type :poly-list)
[1002]438 (grobner *maxima-ring* (remzero f))))
[98]439
440(defmfun $poly_reduced_grobner (f vars)
441 (with-parsed-polynomials ((vars) :poly-lists (f)
442 :value-type :poly-list)
[1002]443 (reduced-grobner *maxima-ring* (remzero f))))
[98]444
445(defmfun $poly_depends_p (p var mvars
446 &aux (vars (coerce-maxima-list mvars))
447 (pos (position var vars)))
448 (if (null pos)
449 (merror "~%Variable ~M not in the list of variables ~M." var mvars)
450 (poly-depends-p (parse-poly p vars) pos)))
451
452(defmfun $poly_elimination_ideal (flist k vars)
453 (with-parsed-polynomials ((vars) :poly-lists (flist)
454 :value-type :poly-list)
[1002]455 (elimination-ideal *maxima-ring* flist k nil 0)))
[98]456
457(defmfun $poly_colon_ideal (f g vars)
458 (with-parsed-polynomials ((vars) :poly-lists (f g) :value-type :poly-list)
[1002]459 (colon-ideal *maxima-ring* f g nil)))
[98]460
461(defmfun $poly_ideal_intersection (f g vars)
462 (with-parsed-polynomials ((vars) :poly-lists (f g) :value-type :poly-list)
[1002]463 (ideal-intersection *maxima-ring* f g nil)))
[98]464
465(defmfun $poly_lcm (f g vars)
466 (with-parsed-polynomials ((vars) :polynomials (f g) :value-type :polynomial)
[1002]467 (poly-lcm *maxima-ring* f g)))
[98]468
469(defmfun $poly_gcd (f g vars)
470 ($first ($divide (m* f g) ($poly_lcm f g vars))))
471
472(defmfun $poly_grobner_equal (g1 g2 vars)
473 (with-parsed-polynomials ((vars) :poly-lists (g1 g2))
[1002]474 (grobner-equal *maxima-ring* g1 g2)))
[98]475
476(defmfun $poly_grobner_subsetp (g1 g2 vars)
477 (with-parsed-polynomials ((vars) :poly-lists (g1 g2))
[1002]478 (grobner-subsetp *maxima-ring* g1 g2)))
[98]479
480(defmfun $poly_grobner_member (p g vars)
481 (with-parsed-polynomials ((vars) :polynomials (p) :poly-lists (g))
[1002]482 (grobner-member *maxima-ring* p g)))
[98]483
484(defmfun $poly_ideal_saturation1 (f p vars)
485 (with-parsed-polynomials ((vars) :poly-lists (f) :polynomials (p)
486 :value-type :poly-list)
[1002]487 (ideal-saturation-1 *maxima-ring* f p 0)))
[98]488
489(defmfun $poly_saturation_extension (f plist vars new-vars)
490 (with-parsed-polynomials ((vars new-vars)
491 :poly-lists (f plist)
492 :value-type :poly-list)
[1002]493 (saturation-extension *maxima-ring* f plist)))
[98]494
495(defmfun $poly_polysaturation_extension (f plist vars new-vars)
496 (with-parsed-polynomials ((vars new-vars)
497 :poly-lists (f plist)
498 :value-type :poly-list)
[1002]499 (polysaturation-extension *maxima-ring* f plist)))
[98]500
501(defmfun $poly_ideal_polysaturation1 (f plist vars)
502 (with-parsed-polynomials ((vars) :poly-lists (f plist)
503 :value-type :poly-list)
[1002]504 (ideal-polysaturation-1 *maxima-ring* f plist 0 nil)))
[98]505
506(defmfun $poly_ideal_saturation (f g vars)
507 (with-parsed-polynomials ((vars) :poly-lists (f g)
508 :value-type :poly-list)
[1002]509 (ideal-saturation *maxima-ring* f g 0 nil)))
[98]510
511(defmfun $poly_ideal_polysaturation (f ideal-list vars)
512 (with-parsed-polynomials ((vars) :poly-lists (f)
513 :poly-list-lists (ideal-list)
514 :value-type :poly-list)
[1002]515 (ideal-polysaturation *maxima-ring* f ideal-list 0 nil)))
[98]516
517(defmfun $poly_lt (f vars)
518 (with-parsed-polynomials ((vars) :polynomials (f) :value-type :polynomial)
519 (make-poly-from-termlist (list (poly-lt f)))))
520
521(defmfun $poly_lm (f vars)
522 (with-parsed-polynomials ((vars) :polynomials (f) :value-type :polynomial)
[1002]523 (make-poly-from-termlist (list (make-term (poly-lm f) (funcall (ring-unit *maxima-ring*)))))))
[98]524
[1640]525|#
Note: See TracBrowser for help on using the repository browser.