close Warning: Can't synchronize with repository "(default)" (The repository directory has changed, you should resynchronize the repository with: trac-admin $ENV repository resync '(default)'). Look in the Trac log for more information.

source: branches/f4grobner/monomial.lisp@ 158

Last change on this file since 158 was 139, checked in by Marek Rychlik, 9 years ago

* empty log message *

File size: 6.4 KB
Line 
1;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*-
2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;
4;;; Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>
5;;;
6;;; This program is free software; you can redistribute it and/or modify
7;;; it under the terms of the GNU General Public License as published by
8;;; the Free Software Foundation; either version 2 of the License, or
9;;; (at your option) any later version.
10;;;
11;;; This program is distributed in the hope that it will be useful,
12;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14;;; GNU General Public License for more details.
15;;;
16;;; You should have received a copy of the GNU General Public License
17;;; along with this program; if not, write to the Free Software
18;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19;;;
20;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
21
22(in-package :grobner)
23
24;;----------------------------------------------------------------
25;; This package implements BASIC OPERATIONS ON MONOMIALS
26;;----------------------------------------------------------------
27;; DATA STRUCTURES: Monomials are represented as lists:
28;;
29;; monom: (n1 n2 ... nk) where ni are non-negative integers
30;;
31;; However, lists may be implemented as other sequence types,
32;; so the flexibility to change the representation should be
33;; maintained in the code to use general operations on sequences
34;; whenever possible. The optimization for the actual representation
35;; should be left to declarations and the compiler.
36;;----------------------------------------------------------------
37;; EXAMPLES: Suppose that variables are x and y. Then
38;;
39;; Monom x*y^2 ---> (1 2)
40;;
41;;----------------------------------------------------------------
42
43(deftype exponent ()
44 "Type of exponent in a monomial."
45 'fixnum)
46
47(deftype monom (&optional dim)
48 "Type of monomial."
49 `(simple-array exponent (,dim)))
50
51;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
52;;
53;; Construction of monomials
54;;
55;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
56
57(defmacro make-monom (dim &key (initial-contents nil initial-contents-supplied-p)
58 (initial-element 0 initial-element-supplied-p))
59 "Make a monomial with DIM variables. Additional argument
60INITIAL-CONTENTS specifies the list of powers of the consecutive
61variables. The alternative additional argument INITIAL-ELEMENT
62specifies the common power for all variables."
63 ;;(declare (fixnum dim))
64 `(make-array ,dim
65 :element-type 'exponent
66 ,@(when initial-contents-supplied-p `(:initial-contents ,initial-contents))
67 ,@(when initial-element-supplied-p `(:initial-element ,initial-element))))
68
69
70
71;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
72;;
73;; Operations on monomials
74;;
75;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
76
77(defmacro monom-elt (m index)
78 "Return the power in the monomial M of variable number INDEX."
79 `(elt ,m ,index))
80
81(defun monom-dimension (m)
82 "Return the number of variables in the monomial M."
83 (length m))
84
85(defun monom-total-degree (m &optional (start 0) (end (length m)))
86 "Return the todal degree of a monomoal M. Optinally, a range
87of variables may be specified with arguments START and END."
88 (declare (type monom m) (fixnum start end))
89 (reduce #'+ m :start start :end end))
90
91(defun monom-sugar (m &aux (start 0) (end (length m)))
92 "Return the sugar of a monomial M. Optinally, a range
93of variables may be specified with arguments START and END."
94 (declare (type monom m) (fixnum start end))
95 (monom-total-degree m start end))
96
97(defun monom-div (m1 m2 &aux (result (copy-seq m1)))
98 "Divide monomial M1 by monomial M2."
99 (declare (type monom m1 m2 result))
100 (map-into result #'- m1 m2))
101
102(defun monom-mul (m1 m2 &aux (result (copy-seq m1)))
103 "Multiply monomial M1 by monomial M2."
104 (declare (type monom m1 m2 result))
105 (map-into result #'+ m1 m2))
106
107(defun monom-divides-p (m1 m2)
108 "Returns T if monomial M1 divides monomial M2, NIL otherwise."
109 (declare (type monom m1 m2))
110 (every #'<= m1 m2))
111
112(defun monom-divides-monom-lcm-p (m1 m2 m3)
113 "Returns T if monomial M1 divides MONOM-LCM(M2,M3), NIL otherwise."
114 (declare (type monom m1 m2 m3))
115 (every #'(lambda (x y z) (declare (type exponent x y z)) (<= x (max y z))) m1 m2 m3))
116
117(defun monom-lcm-divides-monom-lcm-p (m1 m2 m3 m4)
118 "Returns T if monomial MONOM-LCM(M1,M2) divides MONOM-LCM(M3,M4), NIL otherwise."
119 (declare (type monom m1 m2 m3 m4))
120 (every #'(lambda (x y z w) (declare (type exponent x y z w)) (<= (max x y) (max z w))) m1 m2 m3 m4))
121
122(defun monom-lcm-equal-monom-lcm-p (m1 m2 m3 m4)
123 "Returns T if monomial MONOM-LCM(M1,M2) equals MONOM-LCM(M3,M4), NIL otherwise."
124 (declare (type monom m1 m2 m3 m4))
125 (every #'(lambda (x y z w) (declare (type exponent x y z w)) (= (max x y) (max z w))) m1 m2 m3 m4))
126
127(defun monom-divisible-by-p (m1 m2)
128 "Returns T if monomial M1 is divisible by monomial M2, NIL otherwise."
129 (declare (type monom m1 m2))
130 (every #'>= m1 m2))
131
132(defun monom-rel-prime-p (m1 m2)
133 "Returns T if two monomials M1 and M2 are relatively prime (disjoint)."
134 (declare (type monom m1 m2))
135 (every #'(lambda (x y) (declare (type exponent x y)) (zerop (min x y))) m1 m2))
136
137(defun monom-equal-p (m1 m2)
138 "Returns T if two monomials M1 and M2 are equal."
139 (declare (type monom m1 m2))
140 (every #'= m1 m2))
141
142(defun monom-lcm (m1 m2 &aux (result (copy-seq m1)))
143 "Returns least common multiple of monomials M1 and M2."
144 (declare (type monom m1 m2))
145 (map-into result #'max m1 m2))
146
147(defun monom-gcd (m1 m2 &aux (result (copy-seq m1)))
148 "Returns greatest common divisor of monomials M1 and M2."
149 (declare (type monom m1 m2))
150 (map-into result #'min m1 m2))
151
152(defun monom-depends-p (m k)
153 "Return T if the monomial M depends on variable number K."
154 (declare (type monom m) (fixnum k))
155 (plusp (elt m k)))
156
157(defmacro monom-map (fun m &rest ml &aux (result `(copy-seq ,m)))
158 `(map-into ,result ,fun ,m ,@ml))
159
160(defmacro monom-append (m1 m2)
161 `(concatenate 'monom ,m1 ,m2))
162
163(defmacro monom-contract (k m)
164 `(subseq ,m ,k))
165
166(defun monom-exponents (m)
167 (declare (type monom m))
168 (coerce m 'list))
Note: See TracBrowser for help on using the repository browser.