| [81] | 1 | ;;; -*-  Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- 
 | 
|---|
 | 2 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 | 
|---|
 | 3 | ;;;                                                                              
 | 
|---|
 | 4 | ;;;  Copyright (C) 1999, 2002, 2009, 2015 Marek Rychlik <rychlik@u.arizona.edu>          
 | 
|---|
 | 5 | ;;;                                                                              
 | 
|---|
 | 6 | ;;;  This program is free software; you can redistribute it and/or modify        
 | 
|---|
 | 7 | ;;;  it under the terms of the GNU General Public License as published by        
 | 
|---|
 | 8 | ;;;  the Free Software Foundation; either version 2 of the License, or           
 | 
|---|
 | 9 | ;;;  (at your option) any later version.                                         
 | 
|---|
 | 10 | ;;;                                                                              
 | 
|---|
 | 11 | ;;;  This program is distributed in the hope that it will be useful,             
 | 
|---|
 | 12 | ;;;  but WITHOUT ANY WARRANTY; without even the implied warranty of              
 | 
|---|
 | 13 | ;;;  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the               
 | 
|---|
 | 14 | ;;;  GNU General Public License for more details.                                
 | 
|---|
 | 15 | ;;;                                                                              
 | 
|---|
 | 16 | ;;;  You should have received a copy of the GNU General Public License           
 | 
|---|
 | 17 | ;;;  along with this program; if not, write to the Free Software                 
 | 
|---|
 | 18 | ;;;  Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  
 | 
|---|
 | 19 | ;;;                                                                              
 | 
|---|
 | 20 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 | 
|---|
 | 21 | 
 | 
|---|
| [418] | 22 | ;;----------------------------------------------------------------
 | 
|---|
 | 23 | ;; This package implements BASIC OPERATIONS ON MONOMIALS
 | 
|---|
 | 24 | ;;----------------------------------------------------------------
 | 
|---|
 | 25 | ;; DATA STRUCTURES: Conceptually, monomials can be represented as lists:
 | 
|---|
 | 26 | ;;
 | 
|---|
 | 27 | ;;      monom:  (n1 n2 ... nk) where ni are non-negative integers
 | 
|---|
 | 28 | ;;
 | 
|---|
 | 29 | ;; However, lists may be implemented as other sequence types,
 | 
|---|
 | 30 | ;; so the flexibility to change the representation should be
 | 
|---|
 | 31 | ;; maintained in the code to use general operations on sequences
 | 
|---|
 | 32 | ;; whenever possible. The optimization for the actual representation
 | 
|---|
 | 33 | ;; should be left to declarations and the compiler.
 | 
|---|
 | 34 | ;;----------------------------------------------------------------
 | 
|---|
 | 35 | ;; EXAMPLES: Suppose that variables are x and y. Then
 | 
|---|
 | 36 | ;;
 | 
|---|
 | 37 | ;;      Monom x*y^2 ---> #(1 2)
 | 
|---|
 | 38 | ;;
 | 
|---|
 | 39 | ;;----------------------------------------------------------------
 | 
|---|
 | 40 | 
 | 
|---|
| [394] | 41 | (defpackage "MONOMIAL"
 | 
|---|
| [395] | 42 |   (:use :cl)
 | 
|---|
| [422] | 43 |   (:export "MONOM"
 | 
|---|
| [423] | 44 |            "EXPONENT"
 | 
|---|
| [422] | 45 |            "MAKE-MONOM" 
 | 
|---|
| [396] | 46 |            "MONOM-ELT" 
 | 
|---|
 | 47 |            "MONOM-DIMENSION" 
 | 
|---|
 | 48 |            "MONOM-TOTAL-DEGREE"
 | 
|---|
 | 49 |            "MONOM-SUGAR" 
 | 
|---|
 | 50 |            "MONOM-DIV"
 | 
|---|
 | 51 |            "MONOM-MUL" 
 | 
|---|
 | 52 |            "MONOM-DIVIDES-P"
 | 
|---|
| [395] | 53 |            "MONOM-DIVIDES-MONOM-LCM-P"
 | 
|---|
 | 54 |            "MONOM-LCM-DIVIDES-MONOM-LCM-P"
 | 
|---|
| [497] | 55 |            "MONOM-LCM-EQUAL-MONOM-LCM-P"
 | 
|---|
| [395] | 56 |            "MONOM-DIVISIBLE-BY-P"
 | 
|---|
 | 57 |            "MONOM-REL-PRIME-P"
 | 
|---|
 | 58 |            "MONOM-EQUAL-P"
 | 
|---|
 | 59 |            "MONOM-LCM"
 | 
|---|
 | 60 |            "MONOM-GCD"
 | 
|---|
| [504] | 61 |            "MONOM-DEPENDS-P"
 | 
|---|
| [395] | 62 |            "MONOM-MAP"
 | 
|---|
 | 63 |            "MONOM-APPEND"
 | 
|---|
 | 64 |            "MONOM-CONTRACT"
 | 
|---|
 | 65 |            "MONOM-EXPONENTS"))
 | 
|---|
| [81] | 66 | 
 | 
|---|
| [419] | 67 | (in-package :monomial)
 | 
|---|
| [48] | 68 | 
 | 
|---|
 | 69 | (deftype exponent ()
 | 
|---|
 | 70 |   "Type of exponent in a monomial."
 | 
|---|
 | 71 |   'fixnum)
 | 
|---|
 | 72 | 
 | 
|---|
 | 73 | (deftype monom (&optional dim)
 | 
|---|
 | 74 |   "Type of monomial."
 | 
|---|
 | 75 |   `(simple-array exponent (,dim)))
 | 
|---|
 | 76 | 
 | 
|---|
 | 77 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 | 
|---|
 | 78 | ;;
 | 
|---|
 | 79 | ;; Construction of monomials
 | 
|---|
 | 80 | ;;
 | 
|---|
 | 81 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 | 
|---|
 | 82 | 
 | 
|---|
 | 83 | (defmacro make-monom (dim &key (initial-contents nil initial-contents-supplied-p)
 | 
|---|
 | 84 |                                (initial-element 0 initial-element-supplied-p))
 | 
|---|
 | 85 |   "Make a monomial with DIM variables. Additional argument
 | 
|---|
 | 86 | INITIAL-CONTENTS specifies the list of powers of the consecutive
 | 
|---|
 | 87 | variables. The alternative additional argument INITIAL-ELEMENT
 | 
|---|
 | 88 | specifies the common power for all variables."
 | 
|---|
 | 89 |   ;;(declare (fixnum dim))
 | 
|---|
 | 90 |   `(make-array ,dim
 | 
|---|
 | 91 |                :element-type 'exponent
 | 
|---|
 | 92 |                ,@(when initial-contents-supplied-p `(:initial-contents ,initial-contents))
 | 
|---|
 | 93 |                ,@(when initial-element-supplied-p `(:initial-element ,initial-element))))
 | 
|---|
 | 94 | 
 | 
|---|
| [392] | 95 | 
 | 
|---|
| [48] | 96 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 | 
|---|
 | 97 | ;;
 | 
|---|
 | 98 | ;; Operations on monomials
 | 
|---|
 | 99 | ;;
 | 
|---|
 | 100 | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 | 
|---|
 | 101 | 
 | 
|---|
 | 102 | (defmacro monom-elt (m index)
 | 
|---|
 | 103 |   "Return the power in the monomial M of variable number INDEX."
 | 
|---|
 | 104 |   `(elt ,m ,index))
 | 
|---|
 | 105 | 
 | 
|---|
 | 106 | (defun monom-dimension (m)
 | 
|---|
 | 107 |   "Return the number of variables in the monomial M."
 | 
|---|
 | 108 |   (length m))
 | 
|---|
 | 109 | 
 | 
|---|
 | 110 | (defun monom-total-degree (m &optional (start 0) (end (length m)))
 | 
|---|
 | 111 |   "Return the todal degree of a monomoal M. Optinally, a range
 | 
|---|
 | 112 | of variables may be specified with arguments START and END."
 | 
|---|
 | 113 |   (declare (type monom m) (fixnum start end))
 | 
|---|
 | 114 |   (reduce #'+ m :start start :end end))
 | 
|---|
 | 115 | 
 | 
|---|
 | 116 | (defun monom-sugar (m &aux (start 0) (end (length m)))
 | 
|---|
 | 117 |   "Return the sugar of a monomial M. Optinally, a range
 | 
|---|
 | 118 | of variables may be specified with arguments START and END."
 | 
|---|
 | 119 |   (declare (type monom m) (fixnum start end))
 | 
|---|
 | 120 |   (monom-total-degree m start end))
 | 
|---|
 | 121 | 
 | 
|---|
 | 122 | (defun monom-div (m1 m2 &aux (result (copy-seq m1)))
 | 
|---|
 | 123 |   "Divide monomial M1 by monomial M2."
 | 
|---|
 | 124 |   (declare (type monom m1 m2 result))
 | 
|---|
 | 125 |   (map-into result #'- m1 m2))
 | 
|---|
 | 126 | 
 | 
|---|
 | 127 | (defun monom-mul (m1 m2  &aux (result (copy-seq m1)))
 | 
|---|
 | 128 |   "Multiply monomial M1 by monomial M2."
 | 
|---|
 | 129 |   (declare (type monom m1 m2 result))
 | 
|---|
 | 130 |   (map-into result #'+ m1 m2))
 | 
|---|
 | 131 | 
 | 
|---|
 | 132 | (defun monom-divides-p (m1 m2)
 | 
|---|
 | 133 |   "Returns T if monomial M1 divides monomial M2, NIL otherwise."
 | 
|---|
 | 134 |   (declare (type monom m1 m2))
 | 
|---|
 | 135 |   (every #'<= m1 m2))
 | 
|---|
 | 136 | 
 | 
|---|
 | 137 | (defun monom-divides-monom-lcm-p (m1 m2 m3)
 | 
|---|
 | 138 |   "Returns T if monomial M1 divides MONOM-LCM(M2,M3), NIL otherwise."
 | 
|---|
 | 139 |   (declare (type monom m1 m2 m3))
 | 
|---|
 | 140 |   (every #'(lambda (x y z) (declare (type exponent x y z)) (<= x (max y z))) m1 m2 m3))
 | 
|---|
 | 141 | 
 | 
|---|
 | 142 | (defun monom-lcm-divides-monom-lcm-p (m1 m2 m3 m4)
 | 
|---|
 | 143 |   "Returns T if monomial MONOM-LCM(M1,M2) divides MONOM-LCM(M3,M4), NIL otherwise."
 | 
|---|
 | 144 |   (declare (type monom m1 m2 m3 m4))
 | 
|---|
 | 145 |   (every #'(lambda (x y z w) (declare (type exponent x y z w)) (<= (max x y) (max z w))) m1 m2 m3 m4))
 | 
|---|
 | 146 | 
 | 
|---|
 | 147 | (defun monom-lcm-equal-monom-lcm-p (m1 m2 m3 m4)
 | 
|---|
 | 148 |   "Returns T if monomial MONOM-LCM(M1,M2) equals MONOM-LCM(M3,M4), NIL otherwise."
 | 
|---|
 | 149 |   (declare (type monom m1 m2 m3 m4))
 | 
|---|
 | 150 |   (every #'(lambda (x y z w) (declare (type exponent x y z w)) (= (max x y) (max z w))) m1 m2 m3 m4))
 | 
|---|
 | 151 | 
 | 
|---|
 | 152 | (defun monom-divisible-by-p (m1 m2)
 | 
|---|
 | 153 |   "Returns T if monomial M1 is divisible by monomial M2, NIL otherwise."
 | 
|---|
 | 154 |   (declare (type monom m1 m2))
 | 
|---|
 | 155 |    (every #'>= m1 m2))
 | 
|---|
 | 156 | 
 | 
|---|
 | 157 | (defun monom-rel-prime-p (m1 m2)
 | 
|---|
 | 158 |   "Returns T if two monomials M1 and M2 are relatively prime (disjoint)."
 | 
|---|
 | 159 |   (declare (type monom m1 m2))
 | 
|---|
 | 160 |   (every #'(lambda (x y) (declare (type exponent x y)) (zerop (min x y))) m1 m2))
 | 
|---|
 | 161 | 
 | 
|---|
 | 162 | (defun monom-equal-p (m1 m2)
 | 
|---|
 | 163 |   "Returns T if two monomials M1 and M2 are equal."
 | 
|---|
 | 164 |   (declare (type monom m1 m2))
 | 
|---|
 | 165 |   (every #'= m1 m2))
 | 
|---|
 | 166 | 
 | 
|---|
 | 167 | (defun monom-lcm (m1 m2 &aux (result (copy-seq m1)))
 | 
|---|
 | 168 |   "Returns least common multiple of monomials M1 and M2."
 | 
|---|
 | 169 |   (declare (type monom m1 m2))
 | 
|---|
 | 170 |   (map-into result #'max m1 m2))
 | 
|---|
 | 171 | 
 | 
|---|
 | 172 | (defun monom-gcd (m1 m2 &aux (result (copy-seq m1)))
 | 
|---|
 | 173 |   "Returns greatest common divisor of monomials M1 and M2."
 | 
|---|
 | 174 |   (declare (type monom m1 m2))
 | 
|---|
 | 175 |   (map-into result #'min m1 m2))
 | 
|---|
 | 176 | 
 | 
|---|
 | 177 | (defun monom-depends-p (m k)
 | 
|---|
 | 178 |   "Return T if the monomial M depends on variable number K."
 | 
|---|
 | 179 |   (declare (type monom m) (fixnum k))
 | 
|---|
 | 180 |   (plusp (elt m k)))
 | 
|---|
 | 181 | 
 | 
|---|
 | 182 | (defmacro monom-map (fun m &rest ml &aux (result `(copy-seq ,m)))
 | 
|---|
 | 183 |   `(map-into ,result ,fun ,m ,@ml))
 | 
|---|
 | 184 | 
 | 
|---|
 | 185 | (defmacro monom-append (m1 m2)
 | 
|---|
 | 186 |   `(concatenate 'monom ,m1 ,m2))
 | 
|---|
 | 187 | 
 | 
|---|
 | 188 | (defmacro monom-contract (k m)
 | 
|---|
 | 189 |   `(subseq ,m ,k))
 | 
|---|
 | 190 | 
 | 
|---|
 | 191 | (defun monom-exponents (m)
 | 
|---|
 | 192 |   (declare (type monom m))
 | 
|---|
 | 193 |   (coerce m 'list))
 | 
|---|